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Abstract
Ligaments are biomechanically specialized connective tissues that maintain joint stability 
and guide motion under complex loading conditions. At the cellular and molecular levels, 
ligament homeostasis is governed by fibroblast-like cells (ligamentocytes) embedded in an 
intricately organized ECM composed predominantly of type I collagen, with contributions 
from type III collagen, elastin, proteoglycans, and glycoproteins. These cells continuously 
sense and respond to mechanical stimuli—tension, compression, and shear—through 
mechanotransduction pathways involving integrins, focal adhesions, cytoskeletal remodeling, 
and mechanosensitive ion channels. Downstream signaling cascades, including MAPKs and 
PI3K/AKT, integrate biomechanical cues with growth factor and cytokine signaling to fine-
tune gene expression, collagen fibrillogenesis, and ECM turnover. Distinct from tendons, 
ligaments must adapt to multidirectional loads, resulting in unique ECM compositions 
and cellular phenotypes. Appropriate mechanical loading maintains collagen alignment, 
promotes ECM integrity, and stabilizes the ligament cell phenotype. By contrast, insufficient 
or excessive load alters the molecular balance, triggering catabolic processes, inflammation, 
and disorganized ECM assembly. This delicate equilibrium also underlies the ligamentization 
observed in ACL graft remodeling, where controlled mechanical environments and molecular 
interventions accelerate the acquisition of ligamentous properties. Emerging insights into 
transcriptional and epigenetic regulation, growth factor-mediated cues, and cytokine-
driven responses offer avenues to engineer ligament-like tissues and optimize recovery 
strategies. By leveraging molecular knowledge of cell–matrix interactions, growth factor 
profiles, and genetic/epigenetic modulators, clinicians and researchers can design tailored 
loading protocols, biomimetic scaffolds, and regenerative therapies. These approaches 
aim to restore ligament functionality, enhance graft integration, and prevent degenerative 
changes, ultimately improving patient outcomes in ligament injury repair and reconstruction. 
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Introduction

Ligaments are critical connective tissues that link bones and guide joint motion, 
withstanding complex, multidirectional mechanical loads that ensure joint stability and 
proper arthrokinematics [1–3]. At the cellular and molecular levels, ligament biology is 
distinguished by a specialized population of fibroblast-like cells, often termed ligament 
fibroblasts or ligamentocytes, that reside within a highly organized extracellular matrix (ECM) 
[4–7]. The ECM of ligaments is composed predominantly of type I collagen, which provides 
tensile strength, but also includes type III collagen, elastin, and an array of proteoglycans 
and glycoproteins that contribute to viscoelastic behavior and tissue compliance [8–12]. 
This diverse molecular environment allows ligaments to fulfill their demanding mechanical 
functions under various loading regimes [13–15].

Within the ECM milieu, ligament fibroblasts actively sense and respond to mechanical 
cues through mechanotransduction pathways [16–19]. Mechanical loading—whether tensile 
stretch during extension, shear forces during rotational movements, or transient compressive 
loads during joint impact—modulates a cascade of intracellular signals that ultimately 
influence gene expression, protein synthesis, and ECM remodeling [20–23]. At the molecular 
level, integrins—transmembrane receptors that anchor cells to collagen fibrils—serve as 
primary sensors of mechanical forces and transmit signals to focal adhesion complexes 
[24–26]. These complexes include cytoskeletal adaptor proteins, such as vinculin and talin, 
which link integrin receptors to the actin cytoskeleton [27–29]. Changes in tension and 
matrix stiffness alter integrin clustering and conformation, triggering the activation of focal 
adhesion kinase (FAK) and downstream signaling molecules including mitogen-activated 
protein kinases (MAPKs) and PI3K/AKT pathways [30–33]. In parallel, ligament fibroblasts 
detect mechanical perturbations via mechanosensitive ion channels, stretch-activated 
receptors, and the deformation of primary cilia, all of which converge upon intracellular 
signal transduction networks [34–37]. These signals dictate the transcriptional regulation 
of structural proteins (e.g., collagen I, collagen III), proteoglycans (decorin, biglycan), and 
matrix-remodeling enzymes (e.g., matrix metalloproteinases), as well as growth factors and 
cytokines that modulate cellular proliferation, differentiation, and ECM turnover [38–42]. 
Additionally, dynamic changes in ECM composition influence ligand binding and growth 
factor sequestration, further refining the molecular interplay between cells and their 
surrounding matrix [43–45]. This intricate relationship ensures that ligament fibroblasts 
continuously adapt their molecular and cellular states in response to the mechanical 
environment [46–48]. When subjected to appropriate levels of physiologic load, these cells 
maintain homeostasis—preserving proper collagen fibril alignment, ECM integrity, and 
tissue mechanical properties [49–51]. Conversely, deviations in loading conditions, such as 
excessive strain or prolonged unloading, can elicit maladaptive cellular responses, leading 
to ECM disorganization, altered collagen fiber composition, increased proteolytic enzyme 
activity, and a shift towards a more fibrocartilaginous phenotype [52–55]. Such maladaptive 
changes underlie ligament degeneration, impaired healing, and compromised mechanical 
function following injury [56–58].

A nuanced understanding of ligament cell mechanobiology is, therefore, pivotal for 
informing clinical strategies aimed at restoring normal tissue function after injury, enhancing 
rehabilitation protocols, and advancing tissue engineering approaches that mimic the native 
mechanical microenvironment [59–61]. By manipulating molecular signaling pathways, 
fine-tuning mechanical stimulation parameters, and leveraging emerging biotechnologies—
such as growth factor delivery, gene editing, or biomimetic scaffolds—it may be possible to 
direct ligament fibroblasts toward desirable phenotypes [62–64]. Ultimately, improving our 
knowledge of the molecular and cellular responses to mechanical loading will contribute 
significantly to the prevention of ligament injuries, the optimization of post-injury treatement, 
and the successful engineering of functional ligamentous tissues [65–67].
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Molecular and Cellular Differences Between Ligaments and Tendons

While ligaments and tendons share fundamental structural and hierarchical 
organization—both are dense, collagen-rich connective tissues connecting musculoskeletal 
components—their molecular profiles and cellular phenotypes diverge to accommodate 
distinct biomechanical roles (Table 1). Tendons typically transfer unidirectional tensile 
loads from muscle to bone, resulting in a highly aligned, parallel array of type I collagen 
fibers with minimal elastin and relatively sparse proteoglycan content [68–71]. This 
predominance of type I collagen, coupled with low levels of glycosaminoglycans (GAGs), 
reflects an adaptation to resist tensile loading along a single predominant axis. Ligaments, 
in contrast, withstand more complex, multidirectional mechanical environments associated 
with joint stabilization. As a result, ligament ECM composition frequently includes a higher 
proportion of type III collagen interspersed among the predominant type I collagen fibrils, 
as well as greater quantities of elastin and small leucine-rich proteoglycans (SLRPs) such as 
decorin, biglycan, fibromodulin, and lumican [72–74]. These molecules modulate collagen 
fibrillogenesis, influence fibril diameter distribution, and contribute to the viscoelastic 
properties needed to endure variable loading states. The presence of elastin and a richer 
array of proteoglycans imparts ligaments with greater compliance and an enhanced ability 
to absorb and dissipate complex stresses, improving joint stability while allowing controlled 
mobility. At the cellular level, ligament fibroblasts (ligamentocytes) differ from tendon 
fibroblasts (tenocytes) in their gene expression patterns and responsiveness to mechanical 
signals [75–77]. Ligament cells express a distinct repertoire of integrins, including 
integrin subunits that may preferentially bind to ECM components enriched in ligaments, 

Table 1. This table highlights how tendons and ligaments, despite both being collagen-rich connective 
tissues, differ in ECM composition, mechanical properties, cellular phenotypes, integrin expression, 
and transcriptional/epigenetic regulation. These distinctions form the basis for targeted regenerative 
medicine approaches that manipulate molecular and cellular factors to steer tendon grafts and engineered 
constructs toward a ligamentous phenotype, ultimately improving clinical outcomes in ligament repair and 
reconstruction
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influencing downstream signaling pathways that guide cytoskeletal organization and ECM 
remodeling. For instance, certain α- and β-integrin subunits may be upregulated in ligament 
fibroblasts to facilitate adhesion to collagen III- and proteoglycan-rich matrices, while 
tendon cells rely more heavily on integrins tuned to linear collagen I networks. Additionally, 
ligament fibroblasts produce higher levels of elastin and glycoproteins that enhance tissue 
compliance and enable load distribution across multiple axes. Their secretory profile often 
includes distinct growth factors (e.g., TGF-β isoforms, FGF, and CTGF) and cytokines that 
reflect the need for dynamic remodeling under complex loading conditions. These signaling 
molecules not only regulate collagen synthesis and degradation but also modulate matrix 
metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), balancing 
anabolic and catabolic activities to maintain ligament homeostasis.

Key transcription factors such as scleraxis (Scx) and Mohawk (Mkx) are central to both 
tendon and ligament development, but subtle variations in their expression, as well as their 
interaction with cofactors like EGR1, GDFs, and other regulatory proteins, can steer cells 
toward a more ligamentous or more tendinous phenotype [78–80]. For example, differential 
expression levels of Mkx and GDFs might favor the production of elastin and proteoglycans 
characteristic of ligament ECM, while high Scx activity in concert with different co-regulators 
might reinforce a strictly linear collagen network more akin to tendon tissue.

Epigenetic regulators, including microRNAs and chromatin-modifying enzymes, may 
also differ between ligament and tendon fibroblasts, fine-tuning gene expression to match 
the unique mechanical and biochemical environments of each tissue. These epigenetic 
factors can govern the responsiveness to growth factors, integrin-mediated signaling, and 
cytoskeletal stress, ensuring that the cells retain their ligamentous identity and avoid drifting 
toward a tendinous phenotype—or vice versa.

Understanding these molecular and cellular distinctions is crucial for regenerative 
medicine and tissue engineering strategies. When using tendon grafts to reconstruct 
ruptured ligaments (e.g., the anterior cruciate ligament), it is essential that the transplanted 
tissue acquires ligament-like molecular attributes. By manipulating mechanical loading 
parameters, delivering specific growth factors, or modulating transcriptional and epigenetic 
regulators, it may be possible to guide tendon cells toward a ligament-like phenotype. This 
level of molecular control can improve graft integration and ultimately enhance clinical 
outcomes after ligament reconstruction procedures.

Mechanotransduction Pathways in Ligament Cells

Mechanotransduction—the process by which ligament fibroblasts convert mechanical 
stimuli into biochemical and genetic responses—underpins the dynamic remodeling 
and maintenance of connective tissues subjected to complex, multiaxial loads [81–83] 
(Fig. 1). In ligaments, this involves a finely orchestrated network comprising integrin 
receptors, mechanosensitive ion channels, G protein-coupled receptors (GPCRs), primary 
cilia, cytoskeletal filaments, and multiple downstream molecular effectors. Collectively, 
these sensors and signaling hubs regulate the synthesis, organization, and turnover of the 
extracellular ECM. Additionally, specific genetic variants such as R2482H can modify key 
components of calcium-dependent signaling via calcineurin—sometimes referred to as 
“calcineurin 3”—and transcription factors of the NFATC family, imparting unique susceptibility 
or adaptive responses in ligament tissues. Integrins, which exist as transmembrane α/β 
heterodimers, physically couple ligament fibroblasts to collagen fibrils, proteoglycans, 
and glycoproteins within the ECM [84–86]. Mechanical strain alters the conformation and 
clustering of integrin subunits (e.g., α5β1, αvβ3), triggering the recruitment of focal adhesion 
proteins such as talin, vinculin, paxillin, and α-actinin to nascent adhesion complexes [87–
89]. Upon integrin activation, FAK undergoes phosphorylation, creating scaffolding sites 
for Src family kinases and other intermediates that converge on MAPK (ERK, JNK, p38) and 
PI3K/AKT pathways [30–32] [90–92]. ERK commonly mediates proliferation and collagen-
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related gene expression, while JNK and p38 act as stress-activated kinases, reorganizing the 
actin cytoskeleton and modulating MMPs. Meanwhile, PI3K/AKT coordinates cell survival 
and metabolic adaptation, allowing ligament fibroblasts to calibrate collagen deposition, 
proteoglycan assembly, and fibril alignment according to the mechanical demands imposed 

Fig. 1. Graphical representation of ligament mechanosensing. This Fig. illustrates the principal 
mechanosensitive pathways that operate within ligament fibroblasts following mechanical loading. At the 
cell–ECM interface, mechanical strain on integrins (e.g., α5β1, αvβ3) triggers clustering of focal adhesion 
proteins—such as talin, vinculin, paxillin, and α-actinin—thereby activating and phosphorylating focal 
adhesion kinase (FAK). In turn, FAK provides a platform for Src kinases and adaptors that merge into two 
major downstream pathways: the MAPK cascade (ERK, JNK, p38) and the PI3K/AKT axis. ERK drives cell 
proliferation and collagen gene expression, whereas JNK and p38 mediate cytoskeletal remodeling and MMP 
regulation. The PI3K/AKT pathway orchestrates cell survival signals and modulates collagen deposition, 
proteoglycan assembly, and fibril alignment.Meanwhile, mechanosensitive ion channels (e.g., TRPV4 and 
PIEZO1) detect membrane deformation and facilitate rapid Ca²⁺ influx, activating calmodulin-dependent 
kinases or phosphatases (e.g., calcineurin). Elevated intracellular Ca²⁺ also influences Rho GTPases (RhoA, 
Rac1, Cdc42), promoting changes in actin filament organization and focal adhesion architecture. These 
modifications alter nuclear shape, impacting gene accessibility and epigenetic regulation. Within the 
calcium signaling branch, calcineurin dephosphorylates NFATC family members (e.g., NFATC1, NFATC2, 
NFATC3), enabling their nuclear translocation. The R2482H variant can affect calcineurin’s sensitivity to 
Ca²⁺, thereby influencing NFATC-driven ECM gene expression and MMP activity. In addition to integrin 
and ion channel inputs, GPCR activation and primary cilia bending under mechanical load provide further 
layers of mechanosensing. Conformational shifts in GPCRs trigger heterotrimeric G proteins, reinforcing 
integrin–FAK and Ca²⁺ pathways. Primary cilia respond to fluid shear or matrix deformation by regulating 
intraflagellar transport, thereby modulating transcription factors including scleraxis (Scx), Mohawk (Mkx), 
and EGR1. Finally, mechanical signals converge at the transcriptional and epigenetic level, where factors 
such as Scx, Mkx, EGR1, and YAP/TAZ integrate cytoskeletal tension cues to control ECM-related gene 
programs. Epigenetic modifications (histone alterations, DNA methylation, microRNAs) refine collagen and 
MMP expression, while growth factors (TGF-β, FGF, CTGF) further reinforce fibril assembly and homeostatic 
tissue remodeling.
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on the tissue.
Mechanosensitive ion channels—including members of the TRP (Transient Receptor 

Potential) superfamily (e.g., TRPV4) and PIEZO channels (e.g., PIEZO1)—translate physical 
deformation of the cell membrane into ionic fluxes [93–95]. When stretched or subjected 
to fluid shear, these channels open and permit rapid influx of ions, predominantly Ca²⁺, 
into the cytoplasm. Intracellular calcium elevation activates calmodulin-dependent kinases 
or phosphatases (including calcineurin), which then modulate a host of transcriptional 
regulators [96–98]. Increased cytosolic Ca²⁺ also impacts the Rho family of GTPases (RhoA, 
Rac1, Cdc42), controlling actin stress-fiber formation and focal adhesion organization [99–
100]. These cytoskeletal reconfigurations affect nuclear geometry and chromatin accessibility, 
linking external mechanical cues to epigenetic modifications (e.g., histone acetylation, 
DNA methylation) and facilitating the loading-specific regulation of ECM-related genes. 
A key component of the calcium-mediated branch of mechanotransduction in ligament 
cells is calcineurin, a Ca²⁺/calmodulin-dependent serine/threonine phosphatase that can 
be referred to in some contexts as “calcineurin 3.” Calcineurin dephosphorylates members 
of the NFAT (Nuclear Factor of Activated T-cells) family—such as NFATC1, NFATC2, and 
NFATC3—enabling their translocation to the nucleus [96–98]. Once inside the nucleus, these 
NFATC factors orchestrate the expression of ECM components, MMPs, and other remodeling 
proteins critical for ligament integrity. The R2482H variant, typically found in the regulatory 
subunit gene of calcineurin (PPP3R1), can alter the phosphatase’s sensitivity to Ca²⁺ levels, 
in turn affecting the magnitude or speed of NFATC activation. Such a variant may predispose 
certain individuals to differential ligament adaptations or altered healing outcomes, 
exemplifying how genetic polymorphisms intersect with mechanical loading to influence 
tissue phenotype [81–83]. Besides integrin and ion channel signaling, ligament fibroblasts 
can detect mechanical cues via GPCRs [101–102]. Under load, G protein-coupled receptors 
undergo conformational shifts that trigger heterotrimeric G proteins, adding an extra layer 
of molecular crosstalk with integrin-FAK signals and Ca²⁺-mediated pathways. Moreover, 
primary cilia—antenna-like organelles comprising a microtubule core—may project 
from ligament fibroblasts into the pericellular matrix [103–104]. Bending of these cilia in 
response to fluid shear or ECM deformation modulates intraflagellar transport, influencing 
downstream signaling modules that converge on the nucleus to regulate transcription 
factors like Scx, Mkx, and EGR1. Defects in ciliary assembly or function can thus compromise 
ligament fibroblasts’ ability to sense and adapt to changing mechanical environments.

Tensile loading predominantly arises from joint movements that elongate the ligament, 
creating strain on collagen fibrils and associated focal adhesions. This strain alters the 
conformation and clustering of integrin subunits (e.g., α5β1, αvβ3), triggering the recruitment 
of focal adhesion proteins such as talin, vinculin, paxillin, and α-actinin to adhesion complexes 
[87–89]. These nascent adhesions activate FAK and Src family kinases, converging on MAPK 
(ERK, JNK, p38) and PI3K/AKT pathways [30–32] [90–92]. ERK mediates proliferation and 
collagen gene expression, while JNK and p38 reorganize the actin cytoskeleton and regulate 
matrix metalloproteinases (MMPs). The PI3K/AKT pathway coordinates cell survival and 
metabolic adaptation, ensuring that collagen deposition and fibril alignment match the 
tensile demands imposed on the tissue.

By contrast, compressive loading is often transmitted through regions near entheses 
(bone–ligament junctions) or via changes in tissue hydrostatic pressure and fluid flow 
within the ECM. Under compression, ligamentocytes may experience altered osmotic 
balances that activate mechanosensitive ion channels such as TRPV4, which is sensitive to 
volumetric changes and hydrostatic pressure [93–95]. The resultant influx of Ca²⁺ engages 
calmodulin-dependent kinases or phosphatases (e.g., calcineurin), further modulating Rho 
GTPase activity (RhoA, Rac1, Cdc42) and promoting cytoskeletal reorganization. These shifts 
in cytoskeletal architecture can ultimately influence nuclear shape, chromatin accessibility, 
and the expression of ECM proteins vital for accommodating compressive stress.

Meanwhile, shear loading arises from fluid movement across cell surfaces or from sliding 
between collagen fibers under torsional stresses. Shear forces can open mechanosensitive 
ion channels, including PIEZO (PIEZO1) and certain TRP family members, permitting rapid 
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ionic flux—primarily Ca²⁺—into the cytoplasm [93–95]. Elevated Ca²⁺ activates calcineurin, 
thereby regulating NFATC-dependent transcription and other Ca²⁺-responsive pathways 
[96–98]. In addition, shear stress can bend primary cilia, altering intraflagellar transport 
and triggering signaling cascades that converge on transcription factors like Scx, Mkx, and 
EGR1. Taken together, tensile, compressive, and shear inputs each engage overlapping yet 
distinct molecular circuits, enabling ligamentocytes to fine-tune ECM remodeling depending 
on the specific mechanical context.

At the transcriptional and epigenetic level, mechanical signals converge on factors 
such as Scx, Mkx, EGR1, and YAP/TAZ, each playing a distinct role in specifying ligament 
lineage and ECM gene expression [105–107]. Alterations in cytoskeletal tension may 
reshape the nuclear lamina and affect how these factors and their coactivators access 
DNA. Simultaneously, epigenetic mechanisms—including modifications of histone 
proteins (acetylation, methylation, phosphorylation), chromatin remodeling complexes, 
and the action of noncoding RNAs—further refine ligament gene regulation [108–109]. 
MicroRNAs (e.g., miR-29 family, miR-221) can dampen excessive collagen transcription or 
MMP production, optimizing matrix turnover [110–111]. Meanwhile, mechanical loading 
can liberate latent growth factors like TGF-β or modulate the activity of FGF and CTGF, 
reinforcing collagen fibril assembly and crosslinking in tandem with integrin/ion channel 
signals [39–41] [112]. Such growth factor signaling synchronizes fibroblast proliferation, 
ECM deposition, and fibril organization to maintain structural homeostasis or promote 
repair following injury [113]. Hence, mechanotransduction in ligament cells emerges as an 
integrated molecular circuit wherein integrins, mechanosensitive ion channels, GPCRs, and 
primary cilia provide multifaceted sensing capabilities, while calcineurin–NFATC signaling, 
Rho GTPases, transcription factors, and epigenetic regulators translate these signals into 
coordinated ECM remodeling. Under physiological loads, these pathways uphold balanced 
collagen synthesis, tissue resilience, and functional stability. However, perturbed mechanical 
environments—whether from insufficient or excessive loading, acute trauma, or genetic 
factors like R2482H—can yield disorganized collagen architectures, delayed healing, or 
degeneration.

Molecular Adaptations to Mechanical Loading

Ligament cells exhibit remarkable sensitivity to their mechanical environment, 
continually adjusting their molecular output in response to variations in load (Table 2). 
Under physiologic levels of cyclic tensile loading—mimicking normal joint motion—
ligament fibroblasts maintain a tightly regulated equilibrium between ECM synthesis and 
degradation, ensuring that tissue remodeling aligns with functional demands [42–44, 114–
116]. In this balanced state, integrin-mediated signaling and focal adhesion assembly foster 
robust cytoskeletal organization, sustaining the elongated, spindle-shaped morphology 
characteristic of healthy ligament cells. The resulting mechanical cues influence key 
transcription factors, including Scx and Mkx, which are central to specifying and preserving 
the ligamentous phenotype [45–48, 117–119]. By promoting the expression of collagen I 
and III, proteoglycans, and associated glycoproteins, physiologic loading reinforces tensile 
strength, elasticity, and structural integrity. At the molecular level, physiological loading also 
impacts the activity of signaling cascades such as the MAPK (ERK, JNK, p38) and PI3K/AKT 
pathways. These pathways converge on the nucleus, modulating transcription factor binding 
to gene promoters and enhancers, thereby enhancing the synthesis of ECM proteins that 
support tissue homeostasis [120–122]. Balanced loading ensures that the rates of collagen 
deposition, fibrillogenesis, and crosslinking match the tissue’s mechanical requirements. 
Through the controlled production of proteoglycans like decorin and biglycan, ligament 
cells maintain appropriate collagen fibril spacing, contributing to optimized viscoelastic 
properties that resist dynamic and complex loading patterns [123–124].

In contrast, deviations from this equilibrium—either by mechanical underloading or 
excessive strain—shift the molecular landscape toward a catabolic, degenerative state. 
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Inadequate load (e.g., during immobilization) decreases integrin clustering and focal 
adhesion stability, reducing FAK phosphorylation and downstream signaling [125–126]. 
Without the requisite mechanical stimuli, ligament fibroblasts downregulate anabolic 
genes while upregulating catabolic mediators. These changes often manifest as an increase 
in collagen III at the expense of collagen I, disruption of fibril organization, and altered 
expression of tenascin-C, a glycoprotein that influences cell–matrix interactions and tissue 
repair processes [49–51, 127–129]. The result is a more disorganized ECM, reduced stiffness, 
and diminished load-bearing capability. Excessive mechanical loading, on the other hand, 
can induce cellular stress responses that involve the release of pro-inflammatory cytokines 
such as IL-1β and TNF-α [52–54, 130–132]. These cytokines stimulate pathways that 
enhance the synthesis and activation of matrix metalloproteinases (MMPs), enzymes that 
degrade collagen and other ECM components. As ECM integrity declines, the tissue becomes 
weaker and more susceptible to injury. Excessive loading may also alter the expression of 
key regulatory microRNAs that fine-tune collagen and MMP gene expression, reinforcing the 
breakdown of ECM and driving the tissue toward pathological remodeling [133–135].

Table 2. Table delineates the molecular and cellular responses of ligament cells under different mechanical 
loading modalities: Physiologic Loading, Insufficient Loading, and Excessive Loading. This table highlights 
key aspects such as signaling pathways, gene expression, ECM composition, and clinical implications, 
supported by references
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In essence, the molecular adaptations of ligament cells to mechanical loading form a 
delicate continuum. At one end, physiologic loading maintains homeostasis by orchestrating 
a network of signaling molecules, transcription factors, and epigenetic regulators that 
promote collagen synthesis, appropriate proteoglycan levels, and stable cell phenotypes. At 
the other extreme, insufficient or excessive loading conditions lead to a downward spiral of 
altered integrin signaling, inflammatory mediator release, and enhanced ECM degradation.

Tendon-to-Ligament Transition. Anterior Cruciate Ligament Graft Remodeling

A clinically relevant example of ligament cell plasticity at the molecular and cellular 
levels is demonstrated after anterior cruciale ligament (ACL) reconstruction with the use 
on tendon grafts. Common donor tissues, such as the hamstring (semitendinosus/gracilis 
tendon graft) or patellar tendon, initially retain their inherent tendon-like molecular profile, 
characterized by a highly aligned, predominantly type I collagen matrix and minimal elastin 
or proteoglycan content [55–57, 136–138]. Placed into the knee joint, these tendon grafts 
are suddenly exposed to a complex mechanical milieu fundamentally different from the 
unidirectional tensile environment of a tendon’s native placement.

Over time, the graft undergoes a process termed “ligamentization,” in which mechanical 
loading patterns, local biochemical signals, and the joint’s synovial environment collaborate 
to drive a molecular and cellular transformation from a tendon-like to a ligament-like 
phenotype [58–61, 139–140]. This biological adaptation involves complex remodeling, 
including cellular infiltration, vascularization, extracellular matrix reorganization, and 
collagen maturation. Ligamentization occurs in distinct phases, beginning with early necrosis, 
followed by revascularization, cellular repopulation, and progressive structural integration 
into the knee joint. The tendon graft healing process in a bone tunnel has been studied 
in animal models [141]. Initially, the graft-tunnel interface fills with vascular granulation 
tissue rich in type III collagen. Vascular endothelial growth factor (VEGF) and fibroblast 
growth factor (FGF) stimulate macrophage influx and fibroblast enlargement. Chondroid 
cells deposit type II collagen, supporting new bone formation [141]. By 3–4 weeks, the 
matrix matures into Sharpey-like collagen fibers bridging the bone and graft. These fibers, 
composed of type III collagen, integrate into surrounding bone to resist shear stress, with 
their size correlating to graft pull-out strength. The process takes 8–30 weeks [141], with 
graft attachment strengthening as bone grows into the interface tissue [142].

At the heart of this transformation are changes in mechanotransduction pathways: 
integrins bind to newly abundant ECM components, including type III collagen, elastin, 
decorin, and biglycan. These integrin-mediated adhesions remodel focal adhesions and 
alter the actin cytoskeleton organization, shifting intracellular tension and triggering new 
signaling cascades [62–64, 143-144]. On the molecular level, this transition is orchestrated 
by shifts in gene expression that reflect the ligament’s need to accommodate more complex, 
multidirectional loads. Transcription factors such as Scx and Mkx may adjust their relative 
expression patterns in response to altered mechanical stress and growth factor gradients 
[145–147]. Additionally, extracellular signals from TGF-β, FGF, and VEGF support ECM 
remodeling, neo-vascularization, and cellular proliferation [148–150]. TGF-β, for instance, 
drives the production of type III collagen and elastin, while VEGF promotes angiogenesis, 
ensuring that the evolving graft is well-vascularized and metabolically supported. FGFs and 
CTGF further influence collagen fibrillogenesis and crosslinking, reinforcing the emerging 
ligamentous structure. Integrin signaling feeds into MAPK and PI3K/AKT pathways, 
modulating the balance of anabolic and catabolic genes. As these pathways are tweaked 
by the new mechanical environment, cells increase the synthesis of small leucine-rich 
proteoglycans (SLRPs) like decorin and biglycan [151–153]. These SLRPs guide collagen 
fibrillogenesis, adjusting fibril diameter distributions and introducing a characteristic 
crimp pattern more akin to ligament tissue. Over time, the mechanical properties evolve: 
the graft’s collagen fibrils become less linear and more varied in diameter and crimp, 
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imparting increased compliance and an ability to handle shear and rotational forces typical 
of ligament loading [65–67, 154–156]. At the cellular level, epigenetic modifications (e.g., 
changes in histone acetylation, DNA methylation, and microRNA profiles) may also play a 
role in stabilizing the ligament-like transcriptional program [157–159]. These epigenetic 
changes help “lock in” the new molecular identity, ensuring that the once tendon-specific 
fibroblasts now consistently express genes associated with ligament biology and maintain a 
ligamentous ECM architecture.

Biologic augmentation strategies, such as delivering specific growth factors (e.g., TGF-β 
or VEGF), using gene editing techniques to upregulate ligament-associated transcription 
factors, or modulating epigenetic regulators, can further hasten the tendon-to-ligament 
transition [160–165].

Regulatory Networks and Transcriptional Control

Ligament cell fate and ECM composition are governed by an intricate regulatory 
landscape that integrates mechanical cues with transcriptional and epigenetic mechanisms. 
Central to this network are key transcription factors (TFs) that respond to the tissue’s 
mechanical environment and orchestrate the gene expression patterns needed for proper 
ligament structure and function. Scx, a basic helix-loop-helix transcription factor, is one of 
the most extensively studied regulators of tendon and ligament development. Scx directs 
the transcription of collagen genes (e.g., COL1A1, COL3A1) and other ECM components, 
ensuring the formation of robust, load-bearing collagen fibrils [166–168]. By interacting 
with cofactors and binding to enhancer regions of ECM-related genes, Scx helps maintain 
the ligament’s tensile strength and prevents the adoption of a non-ligamentous phenotype. 
Similarly, Mkx, a homeodomain transcription factor, plays critical roles in specifying 
tendon/ligament lineage commitment and sustaining ligament cell identity [169–170]. Mkx 
influences collagen fibrillogenesis and ECM organization, complementing the actions of 
Scx and ensuring that mechanical signals translate into a stable gene expression program. 
Another important transcription factor, EGR1, modulates the tissue’s response to injury and 
mechanical stress [171]. EGR1 is rapidly induced by extracellular signals and biomechanical 
loading, influencing genes involved in ECM remodeling, growth factor signaling, and 
cytoskeletal architecture. By adjusting the levels of EGR1, ligament cells can tune their 
repair strategies—upregulating MMPs and proteoglycans as needed during healing and 
downregulating them once homeostasis is restored. In this manner, EGR1 acts as a molecular 
rheostat that balances anabolic and catabolic processes in response to changing mechanical 
environments.

These transcription factors do not act in isolation. Instead, they function within larger 
regulatory networks where mechanical signals—transduced via integrins, focal adhesion 
complexes, and the cytoskeleton—converge on the cell nucleus to modulate TF activity 
[172–173]. Mechanical stretch or compression can alter TF nuclear localization, protein 
stability, and DNA-binding affinity. Certain mechanosensitive co-activators, such as YAP/
TAZ, may also participate in this regulatory matrix [174–175]. YAP/TAZ activity is influenced 
by cytoskeletal tension and focal adhesion assembly, allowing cells to integrate mechanical 
information with biochemical cues and adjust gene expression patterns accordingly. In 
addition to these TF-driven regulatory circuits, epigenetic mechanisms provide another layer 
of fine-tuning. DNA methylation and histone modifications (e.g., acetylation, methylation) can 
dynamically alter chromatin structure, influencing the accessibility of transcription factor 
binding sites and thereby regulating the transcriptional output in ligament fibroblasts [176–
178]. Mechanical cues have been shown to modulate chromatin organization, potentially 
through mechano-sensitive chromatin remodeling complexes that determine which genes 
are actively transcribed or repressed in response to load [179–180].

MicroRNAs (miRNAs) are emerging as critical post-transcriptional regulators of gene 
expression in ligament biology. These small, non-coding RNAs bind to target mRNAs and 
either repress their translation or induce their degradation. For instance, miRNAs can 
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finely adjust collagen and MMP expression, ensuring that ECM synthesis and degradation 
remain in balance [181–183]. By selectively modulating levels of key structural proteins and 
enzymes, miRNAs help maintain tissue integrity and responsiveness to mechanical stimuli. 
Changes in miRNA expression profiles after injury or altered loading conditions can tilt the 
balance between anabolic and catabolic activities, contributing to either successful healing 
or degenerative changes. For example, delivering small molecules or gene-editing reagents 
(e.g., CRISPR/Cas9) could modulate the activity of Scx, Mkx, or EGR1, accelerating the tendon-
to-ligament transition in ACL grafts [184–186]. Likewise, manipulating miRNA expression 
or histone-modifying enzymes could prevent unwanted fibrocartilaginous transformations, 
maintain ECM homeostasis, and promote superior mechanical function [187–188].

In essence, the molecular and cellular regulatory networks controlling ligament cell fate 
and ECM composition form an adaptive system that continually integrates mechanical and 
biochemical signals.

Growth Factors, Cytokines, and Inflammatory Mediators

Beyond structural proteins, the mechanical environment of the ligament coordinates 
a multifaceted molecular dialogue involving growth factors, cytokines, and other signaling 
molecules that guide ligament cell fate and ECM organization. Ligament fibroblasts—attuned 
to subtle changes in tissue tension and stiffness—respond to appropriate tensile strain by 
adjusting their secretome and receptor expression patterns [189–191]. When integrins 
at the cell surface detect physiological loading, they cluster within focal adhesions and 
engage intracellular adaptors to activate downstream signaling pathways [192–194]. This 
mechanotransduction process triggers the upregulation and release of key growth factors, 
such as TGF-β isoforms, which translocate to the nucleus via SMAD-dependent pathways. 
There, they influence chromatin structure and transcription factor binding, increasing the 
expression of collagen (particularly types I and III) and proteoglycans (such as decorin and 
biglycan). These ECM components enhance the tissue’s tensile strength, maintain proper 
fibril spacing, and preserve its viscoelastic properties [76, 195–197] Similarly, FGF and IGF-
1 (Insulin-like Growth Factor 1) operate as potent modulators of cellular proliferation and 
ECM turnover by engaging their receptor tyrosine kinases and activating MAPK and PI3K/
AKT cascades [198–200]. At the molecular level, these pathways converge on transcriptional 
regulators that orchestrate gene programs for ECM synthesis, cytoskeletal remodeling, 
and metabolic adaptations. FGF-driven signals, for instance, can fine-tune actin filament 
organization, influencing the spatial arrangement of collagen fibrils. IGF-1, in turn, can 
bolster anabolic metabolism, ensuring that fibroblasts have sufficient energy and substrates 
for ECM protein synthesis [201–203]. CTGF, another crucial factor, integrates mechanical 
cues and growth factor signals by localizing to focal adhesions and influencing collagen 
fiber alignment. CTGF’s presence refines fibril architecture, ensuring that newly deposited 
collagen fibers form robust, mechanically optimized networks [77–79, 204–206]. On a 
molecular scale, these growth factors modulate the balance between collagen crosslinking 
enzymes (e.g., lysyl oxidase) and proteolytic enzymes, guiding fibril maturation and stiffness. 
However, this delicately balanced molecular system can be perturbed by injury, abnormal 
loading patterns, or local hypoxia [207–209]. Excessive mechanical strain or reduced loading 
leads to alterations in integrin-mediated signaling, causing shifts in the fibroblast secretome. 
Under these conditions, pro-inflammatory cytokines such as IL-1β and TNF-α surge [210–
212]. At the cellular level, these cytokines activate NF-κB and related transcriptional 
networks, upregulating MMPs and aggrecanases that degrade ECM components and weaken 
the overall scaffold [80–82, 213–215]. High levels of NO (Nitric Oxide) further compound 
these issues by disrupting growth factor receptor function and interfering with proper ECM 
protein folding and crosslinking [216–218]. NO’s reactive intermediates can modify the 
redox state of critical signaling proteins, diminishing the efficiency of growth factor-driven 
anabolic pathways and exacerbating collagen breakdown. This molecular environment 
fosters a feedback loop where degraded ECM fragments and persistent inflammatory signals 
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perpetuate a cycle of tissue degeneration, scar formation, and biomechanical insufficiency.
From a cellular perspective, fibroblasts exposed to these pathological cues alter their 

gene expression profiles, increasing expression of stress-responsive genes and proteolytic 
enzymes while reducing collagen synthesis [219–221]. Changes in actin cytoskeleton 
organization and nuclear shape reflect shifts in transcription factor localization and chromatin 
accessibility, ultimately skewing the cell toward a catabolic phenotype [222–224]. Over time, 
these molecular changes reshape the local microenvironment, favoring fibrocartilaginous 
or scar-like tissue rather than a functional ligament structure. To reverse or prevent these 
maladaptive processes, interventions that target molecular pathways hold promise [225–
227]. Such precise mechanical stimulation preserves TGF-β, FGF, IGF-1, and CTGF’s anabolic 
effects on collagen alignment and ECM deposition while dampening pro-inflammatory 
signals. Pharmacological agents or biologics that block IL-1β or TNF-α receptors, neutralize 
NO, or inhibit MMP activity can restore a more regenerative molecular environment. Gene 
editing tools or miRNA modulators could be deployed to stabilize anabolic gene expression 
patterns or to rescue compromised integrin and growth factor signaling pathways [228–
230].

In summary, the molecular and cellular interplay between mechanical forces, growth 
factors, and inflammatory mediators is central to ligament homeostasis and repair. By 
understanding the precise molecular underpinnings—how integrin signaling interfaces 
with growth factor receptor activation, how cytokines distort transcriptional and epigenetic 
landscapes, and how NO modulates receptor sensitivity—clinicians and researchers can 
design strategies that maintain molecular homeostasis. This will improve ECM quality, 
ensure proper collagen fibrillogenesis, and ultimately lead to more resilient ligaments better 
able to withstand functional demands and recover from injury.

Stress Shielding in Ligaments

The concept of stress shielding in ligaments emerges when portions of the tissue 
are effectively protected or “shielded” from the mechanical strains they would normally 
experience (Fig. 2). Under healthy conditions, ligaments and tendons rely on tension 
and mechanical loading cues to maintain their structural integrity, ensuring proper cell 
alignment, collagen fibrillogenesis, and tissue homeostasis. However, when stress is 
diverted or reduced—such as by the presence of an adjacent stiffer material, a parallel 
healthy tissue segment, or changes in tissue composition—ligament cells are deprived of the 
mechanical signals needed to sustain normal ECM organization and tenogenic (ligament-
like) gene expression [231–233]. Ligaments exhibit viscoelastic properties characterized 
by creep, hysteresis, and stress-relaxation—the phenomenon where tissue stress decreases 
over time under a constant strain. Normally, small, cyclic load-unload patterns and brief 
stress-relaxation intervals help maintain ligament health, allowing collagen fibrils to 
reorganize, water and solute to redistribute, and cells to recover metabolically. When stress 
is permanently shielded from certain ligament regions, those areas experience drastically 
reduced load and, thus, diminished opportunities for periodic stress-relaxation. Without 
adequate stress-relaxation cycles, fibroblasts fail to engage in the micro-adjustments (e.g., 
cytoskeletal remodeling, local collagen reorientation) vital for maintaining or restoring 
tissue tensile properties.

In healing or injured ligament tissues, the formation of a compliant, disorganized scar in 
parallel with stiffer, healthier tissue leads to a significant mismatch in mechanical properties 
[234–235]. Because the intact portion of the ligament (or an external stiff structure, like a 
surgical implant) bears most of the load, the more compliant scar region undergoes relatively 
less tension. This reduction in stress transmission to the scar is known as stress shielding. 
The under-loaded scar tissue experiences minimal stress-relaxation episodes, limiting its 
ability to reorganize collagen fibrils. Ligament fibroblasts in the shielded region lose crucial 
mechanical cues, reduce matrix turnover, and fail to form well-aligned collagen fascicles 
capable of bearing load [236–238]. Without adequate tensile loading, cells within the scar 
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cannot properly align; consequently, collagen fibrils remain disordered and fail to mature 
into a load-bearing, ligament-like matrix. Over time, diminished stress-relaxation intervals 
can further hasten the fibrocartilaginous transition of the tissue, making it more vulnerable 
to mechanical failure.

Molecularly, in the absence of sufficient tensile stress and normal stress-relaxation 
cycles, transcription factors such as Mohawk (Mkx) and Egr1 remain low, while chondrogenic 
markers like Sox9 and Col2a1 rise [239–241]. In a properly stressed ligament, periodic 
strain (and associated stress-relaxation) triggers integrin–FAK–MAPK signaling that drives 
collagen type I expression, organizes fibrils, and promotes the tenogenic phenotype. By 
contrast, shielded regions fail to sustain these signals. Elevated Sox9, collagen type II, and 
proteoglycan content emerges, resembling tissue more akin to cartilage than ligament.  
Scar tissue retains immature collagen crosslinks and smaller fibril diameters, lacking the 
robust load-bearing capacity typical of healthy ligament [242–244]. Experimental evidence 
supports the role of stress shielding in this detrimental cascade. Insertion of a stiffer material 
in parallel with a healthy tendon or ligament decreases the tensile forces experienced by 
the native tissue, leading to decreased load-bearing capacity, collagen disorganization, 
and hypercellularity—changes characteristic of scar formation [245–247]. These shielded 
regions also exhibit insufficient stress-relaxation behavior, indicating minimal opportunities 
for reorienting collagen fibrils and remodeling the matrix.

Fig. 2. This Fig. compares two loading 
scenarios—(1) quick, uncontrolled 
movement with large loads on “cold” 
tissues versus (2) slow, controlled 
movement with smaller loads on 
“warm” tissues—and illustrates how 
stress shielding and stress-relaxation 
can either contribute to injury or 
promote tissue remodeling. In the top 
panel (1), a sudden high load induces 
plastic deformation (failure) in the 
ligament, potentially leading to injury. 
Because the tissue is not given time to 
accommodate or reorganize collagen 
fibrils, the deformation overshoots the 
ligament’s elastic capacity, resulting 
in permanent damage. By contrast, 
the bottom panel (2) shows a gradual, 
lower-intensity load that proceeds 
through phases of plastic flow, stress 
shielding, stress relaxation, and 
ultimately tissue remodeling. Here, 
the tissue benefits from slow loading (e.g., warm-up exercises or controlled rehabilitation protocols) 
that facilitate creep, water redistribution, and cytoskeletal adjustments. Although stress shielding can 
still occur if certain regions of the ligament bear less load than others, timely stress-relaxation intervals 
allow fibroblasts to reorient collagen fibrils and maintain tenogenic gene expression. This is critical for 
avoiding disorganized, scar-like tissue and instead promoting healthier ECM architecture over time. The 
time–deformation graphs depict how, under quick heavy loads, tissue stress initially spikes and may quickly 
exceed its failure threshold. Under slower, methodical loading, tension climbs more gradually and then 
partially relaxes, allowing collagen realignment and micro-adjustments that protect ligament integrity. The 
knee joint schematic on the right underscores how these loading patterns impact ligament homeostasis: 
uncontrolled movement risks plastic deformation and injury, whereas controlled stress cycles combined 
with adequate rest and stress-relaxation intervals encourage adaptive remodeling and strengthen the 
ligament’s load-bearing capacity. High intensity activities monitoting is crucial in injury prevention.
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Conversely, lowering the stiffness of the healthy portion of the tissue or adjusting loading 
protocols (such as introducing isometric tension that facilitates creep and thus better load 
transfer to scarred areas) can reintroduce mechanical signals to shielded cells [248–250]. 
These signals restore partial stress-relaxation cycles and help fibroblasts regain a tenogenic 
phenotype. Elevated Mkx/Egr1 expression, improved collagen alignment, and more mature 
crosslinking patterns are often observed when mechanical cues are reestablished.

In summary, stress shielding in ligaments is a mechanically driven phenomenon wherein 
portions of a healing or regenerating ligament experience insufficient tensile loading and 
inadequate stress-relaxation intervals. This lack of mechanical input prevents proper ECM 
maturation and gene expression patterns essential for restoring healthy ligament structure 
and function, thereby contributing to the persistence of disorganized, scar-like tissue rather 
than promoting regenerative healing. Reintroducing tension—via modifications in loading 
protocols, stiffness gradients, or physical rehabilitation regimens that encourage periodic 
stress-relaxation—may potentially restore normal collagen architecture and bolster the 
mechanical resilience of the ligament over time.

ACL Microtrauma and Overuse

Microtrauma accumulates at the molecular and cellular levels as the ACL is subjected 
to repetitive, sub-failure loads that exceed its capacity for timely repair. At the core of 
this process is the ligament’s resident fibroblasts, which continuously sense and respond 
to mechanical signals through integrin-mediated focal adhesions, the cytoskeleton, and 
associated mechanotransduction pathways [251–253]. Under healthy loading conditions, 
these cells maintain the ECM by synthesizing collagen and other proteins, adjusting fibril 
diameter and organization, and balancing anabolic and catabolic activities. However, when 
microtrauma occurs faster than the tissue can repair, molecular homeostasis is disrupted 
(Fig. 3).

Molecularly, repetitive sub-failure strains can cause partial unfolding of collagen’s 
triple-helical structure at the fibrillar and sub-fibrillar levels. This mechanical deformation 
exposes cryptic binding sites that increase susceptibility to enzymatic cleavage by MMPs 
and aggrecanases [254–256]. The altered mechanical environment shifts fibroblast gene 
expression patterns, downregulating genes associated with stable collagen assembly and 
upregulating those involved in ECM remodeling and degradation. Over time, these changes 
compromise the uniform alignment and crosslinking of collagen fibrils. As collagen fibrils 
become disorganized or partially denatured, the mechanical stiffness and tensile strength of 
the ligament decrease, lengthening the force-displacement “toe region” of the stress-strain 
curve and increasing ligament laxity [257–259].

At the cellular level, the reduced ECM integrity and altered load distribution modify 
integrin engagement, focal adhesion assembly, and downstream signaling via MAPKs, PI3K/
AKT, and Rho GTPases [260–262]. Fibroblasts exposed to these altered mechanical cues 
may produce more inflammatory mediators and shift toward a more catabolic phenotype, 
increasing MMP secretion and decreasing collagen synthesis. In addition, vasculature damage 
from microtrauma diminishes nutrient and oxygen delivery, inducing localized hypoxia 
[263–265]. Ligament cells, possessing relatively low baseline metabolic activity, are generally 
resistant to short-term hypoxia. However, chronic or repeated episodes can hamper cellular 
respiration, reduce ATP production, and limit the resources needed for collagen synthesis 
and proper fibril maturation. The resulting ischemic environment may trigger oxidative 
stress and increase reactive oxygen species (ROS) production, further impacting protein 
folding, crosslink integrity, and cell membrane stability [266–268]. Cellular responses to 
microtrauma also involve subtle changes in mechanosensitive ion channels, growth factor 
receptor signaling, and epigenetic regulation [269–271]. For instance, changes in loading 
frequency or magnitude can alter the expression of transcription factors like Scx and Mkx, as 
well as microRNAs controlling collagen deposition and MMP activity. Poor vascularity within 
certain regions of the ACL, especially at the entheses, slows the infiltration of progenitor cells 
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Fig. 3. Presents a detailed 
schematic divided into eight 
interconnected panels, each 
representing a distinct stage in 
the progression from repeated 
sub-failure loading to ACL injury 
or rupture. The sequence begins 
on the left with Repeated Sub-
Failure Loading and culminates 
on the right with ACL Injury or 
Rupture. Each panel not only 
depicts the mechanical and 
structural alterations within the 
ligament but also delves into the 
underlying molecular responses 
that drive these changes. The 
progression commences with 
Repeated Sub-Failure Loading, 
where athletes engage in 
repetitive movements such as 
jumping, cutting, and pivoting. 
These activities subject the ACL 
to cyclic tensile and shear forces 
that are insufficient to cause 
immediate structural failure 
but are significant enough to 
activate mechanotransduction 
pathways within ACL fibroblasts. 
This mechanical stress triggers 
the activation of transcription 
factors NF-κB (Nuclear Factor 
kappa-light-chain-enhancer 
of activated B cells) and AP-1 
(Activator Protein 1), which 
translocate to the nucleus 
to initiate the expression of 
various inflammatory genes. 
Concurrently, the production 
of Reactive Oxygen Species 
(ROS) increases within ligament 
cells, symbolizing the onset of 
oxidative stress. As loading continues, Accumulation of Microtrauma occurs, evidenced by minor, reversible damage to the extracellular 
matrix (ECM), particularly the collagen fibers. At the molecular level, there is an elevation in Matrix Metalloproteinases (MMP-1 and 
MMP-13), enzymes responsible for degrading collagen and other ECM proteins. The synthesis of pro-inflammatory cytokines such 
as Interleukin-1 beta (IL-1β) and Tumor Necrosis Factor-alpha (TNF-α) is upregulated, enhancing MMP activity while simultaneously 
suppressing ECM synthesis. Additionally, alterations in integrin signaling pathways disrupt the critical communication between cells and 
the ECM, further exacerbating tissue degradation. Progressing to Vasculature Damage & Reduced Healing, the persistent microtrauma 
inflicts damage on the microvasculature within the ACL, leading to reduced blood flow. This hypoxic environment stabilizes Hypoxia-
Inducible Factor 1-alpha (HIF-1α), which alters gene expression to adapt to low oxygen conditions. However, chronic stabilization of 
HIF-1α results in maladaptive responses, including the downregulation of Vascular Endothelial Growth Factor (VEGF), thereby inhibiting 
angiogenesis. Concurrently, apoptotic pathways are activated in ACL fibroblasts through the involvement of caspases and the regulation 
of BAX/Bcl-2 proteins, leading to programmed cell death and further diminishing the ligament’s capacity for repair and regeneration. The 
subsequent stage, Collagen Degeneration & ECM Damage, is marked by diminished and disorganized collagen fibers within the ligament. 
There is a suppression of type I collagen genes (COL1A1 and COL1A2) and a downregulation of lysyl oxidase, an enzyme crucial for collagen 
crosslinking. This weakening of collagen crosslinks undermines the structural integrity of the collagen fibers. Additionally, aggrecanases 
degrade glycosaminoglycans (GAGs), essential components that maintain the ECM’s viscoelastic properties. The degradation of GAGs 
further compromises the ligament’s structural resilience, making it more susceptible to mechanical deformation. Moving to Decreased 
Modulus of Elasticity, the ligament exhibits reduced stiffness and increased flexibility. This change is a direct consequence of misaligned and 
fragmented collagen fibers, which disrupt the uniform distribution of mechanical stress across the ligament. Oxidative modifications, such 
as carbonylation, impair the mechanical properties of collagen, while a reduced density of intact collagen fibrils diminishes the ligament’s 
elastic modulus. These molecular alterations weaken the ligament’s ability to absorb and distribute tensile forces effectively. In the stage of 
Structural Disruption & Laxity, the ligament appears stretched and less taut, indicating increased laxity. Elastin fibers undergo enzymatic 
degradation, and the expression of tenascin-C, a glycoprotein involved in tissue remodeling, is upregulated. These changes contribute to 
the disorganization of the ECM, further compromising the ligament’s structural integrity. The loss of fibril alignment adversely affects load 
distribution, rendering the ligament more prone to deformation and injury during normal activities. As damage accumulates, the ligament 
reaches a state of Increased Susceptibility to Sudden Failure. The overall structure of the ACL is significantly weakened, with visible areas 
of potential rupture. Cellular viability decreases due to ongoing apoptosis and necrosis of ACL fibroblasts, impairing the ligament’s ability 
to maintain and repair the ECM. Disruptions in integrin and growth factor signaling hinder the ligament’s adaptive responses to mechanical 
stress, while protein misfolding and aggregation further compromise cellular functions. These molecular dysfunctions collectively reduce 
the ligament’s resilience, making it highly susceptible to sudden failure. The final panel, ACL Injury or Rupture, depicts the complete 
tear of the ACL accompanied by surrounding inflammation. The collagen matrix can no longer withstand the tensile forces, resulting in 
macroscopic tears. An inflammatory cascade is activated, releasing damage-associated molecular patterns (DAMPs) that exacerbate tissue 
injury. The body’s attempt to heal the damaged ligament involves scar tissue formation, characterized by disorganized fibroplasia that fails 
to restore the original function and integrity of the ligament.  Fig. adapted from Chen J et. al., 2019).
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and reparative growth factors, prolonging the duration during which fibroblasts operate 
under suboptimal conditions [272–274]. This spatial heterogeneity in blood supply can 
create local “hotspots” where microtrauma accumulates, giving rise to region-specific ECM 
degeneration and eventual mechanical failure.

In addition, excessive exercise intensity or poor recovery strategies can chronically 
elevate ROS levels and pro-inflammatory cytokines in the ligament microenvironment 
(Fig. 4). This metabolic and oxidative imbalance places further strain on fibroblasts’ repair 
capacity, reducing their ability to maintain a stable collagen network. Intermittent exercise, 
with adequate rest and nutrient support, can improve redox homeostasis and antioxidant 
defenses, enabling fibroblasts to better manage oxidative stress and resume anabolic activities 
[275–277]. Appropriate timing of collagen peptide supplementation and balanced amino acid 
availability may support fibroblast function, enhancing collagen synthesis and improving 
the ECM’s resilience to repeated loading [278–279]. Ultimately, microtrauma-induced 
changes at the molecular and cellular levels diminish the ligament’s modulus of elasticity 
and predispose it to sudden fatigue failure under nominal loads. Repetitive sub-failure strain 
compromises the delicate equilibrium between ECM deposition and degradation, shifts 
fibroblast phenotypes, and disrupts nutrient and oxygen delivery, collectively weakening the 
ACL’s structural integrity [280–282]. By optimizing cellular metabolism, redox homeostasis, 
and growth factor signaling, it may be possible to enhance the ACL’s capacity for microtrauma 
repair, thereby extending its functional endpoint and reducing the risk of catastrophic 
rupture. In cases where surgical intervention is not immediately required or contraindicated, 
conservative treatment strategies play a crucial role in managing ACL injuries. Structured 
rehabilitation programs focusing on neuromuscular training, proprioception enhancement, 
and quadriceps-hamstring coactivation can aid in stabilizing the knee joint and compensating 
for ligamentous insufficiency. Additionally, interventions such as bracing, controlled 
progressive loading, and biomechanical gait retraining help mitigate excessive stress on the 
ACL while promoting adaptive tissue remodeling.

Ligament Chronobiology: Loading and Unloading

Ligaments exist in a dynamic mechanical environment where the interplay of loading 
and unloading cycles orchestrates their molecular and cellular behavior. Chronobiology—
the time-dependent patterning of biological processes—provides a framework for 
understanding how the frequency, duration, and intensity of mechanical stimuli modulate 
the ECM composition, collagen synthesis, and cellular phenotype of ligament fibroblasts 
over periods of strain and rest [283–285]. Rather than a static tissue, the ligament responds 
to mechanical cues in rhythmic fluctuations that shape gene expression, protein turnover, 
and cellular metabolism. At the molecular level, integrin-mediated mechanotransduction 
pathways continuously gauge tensile forces. During loading phases, integrin engagement 
with collagen and proteoglycans stabilizes focal adhesions, activating FAK and downstream 
MAPK (ERK, JNK, p38) and PI3K/AKT cascades [286–288]. This activation amplifies signals 
that promote collagen gene transcription (COL1A1, COL3A1), ECM deposition, and proper 
fibril alignment. Mechanosensitive ion channels, such as TRP and PIEZO channels, open 
under tensile or shear forces, allowing Ca²⁺ influx [289–291]. Elevated intracellular Ca²⁺ 
fine-tunes cytoskeletal organization and enhances transcription factor activity, reinforcing 
ECM assembly. Growth factors like TGF-β, FGF, and CTGF integrate into these pathways, 
leveraging mechanical cues to boost collagen crosslinking, fibrillogenesis, and mechanical 
strength [292–294].

Conversely, unloading intervals modulate these molecular networks differently. 
Without sufficient mechanical stimulation, integrin clustering diminishes, lowering FAK 
activity and reducing anabolic signaling [295–297]. Closed mechanosensitive ion channels 
limit Ca²⁺ entry, diminishing transcription of ECM proteins and potentially upregulating 
catabolic mediators such as MMPs. With persistent unloading, fibroblasts may shift their 
gene expression patterns toward more fibrocartilaginous characteristics, reducing collagen 
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tensile strength and increasing tissue vulnerability [298–300]. Epigenetic modifications (e.g., 
histone acetylation, DNA methylation) and altered growth factor signaling further entrench 
these changes, leading to disorganized collagen fibrils and weaker mechanical properties 
[301–303]. Ligament fibroblasts also exhibit circadian clock genes, including BMAL1 and 
CLOCK, which form the core transcriptional and translational feedback loops that drive 
rhythmic gene expression [283–285]. Mechanical stimuli can synchronize these circadian 
regulators, influencing downstream targets like PER and CRY, which in turn modulate 
ECM metabolism, MMP activity, and collagen homeostasis. During loading phases aligned 
with the circadian rhythm, BMAL1/CLOCK complexes may reinforce signals from FAK or 
Ca²⁺-dependent cascades, ensuring optimal collagen synthesis and repair. By contrast, 
misalignment—such as prolonged unloading or irregular mechanical stress—could disrupt 
the normal oscillations of BMAL1/CLOCK, attenuating the anabolic signals and predisposing 
the ligament to collagen disorganization or slow healing.

Fig. 4. Presents a multi-layered schematic that 
delineates the intricate molecular mechanisms 
driving the progression from repeated sub-failure 
loading to ACL injury or rupture. The illustration 
is organized into four primary interconnected 
pathways—Inflammatory Pathways, Oxidative 
Stress Response, Extracellular Matrix (ECM) 
Remodeling, and Cellular Stress Responses—
each highlighting a critical aspect of the cellular 
and molecular responses to mechanical stress 
within the ACL. These pathways collectively 
demonstrate the complex interplay between 
inflammatory signaling, oxidative stress, ECM 
degradation, and cellular stress responses, 
culminating in the structural failure of the 
ligament. The progression begins with 
repeated sub-failure mechanical loading, where 
cyclic tensile and shear forces are applied to 
ACL fibroblasts without causing immediate 
structural failure. This mechanical stress 
activates the NF-κB (Nuclear Factor kappa-light-
chain-enhancer of activated B cells) signaling 
pathway through mechanotransduction 
mechanisms. Once activated, NF-κB translocates 
to the nucleus, initiating the expression of various inflammatory genes. This upregulation leads to the synthesis of pro-inflammatory 
cytokines such as Interleukin-1 beta (IL-1β) and Tumor Necrosis Factor-alpha (TNF-α), which amplify the inflammatory response within 
the ligament tissue. These cytokines further stimulate the expression and activation of Matrix Metalloproteinases (MMPs), including MMP-
1 and MMP-13, enzymes responsible for degrading key components of the ECM, particularly type I collagen. The heightened activity of 
MMPs disrupts the integrity of the ECM, thereby compromising the ACL’s ability to withstand tensile forces and contributing to ligament 
laxity and vulnerability to injury. Simultaneously, sub-failure mechanical loading elevates the production of Reactive Oxygen Species 
(ROS) within ACL fibroblasts, inducing oxidative stress. Elevated ROS levels, coupled with resulting hypoxic conditions, stabilize Hypoxia-
Inducible Factor 1-alpha (HIF-1α) by preventing its degradation. Stabilized HIF-1α translocates to the nucleus and alters gene expression 
to adapt to low oxygen environments. However, chronic stabilization of HIF-1α leads to maladaptive responses, including the induction 
of apoptotic signaling pathways involving caspases and the regulation of BAX/Bcl-2 proteins, culminating in programmed cell death of 
ACL fibroblasts. Additionally, chronic inflammation and HIF-1α-mediated gene expression downregulate Vascular Endothelial Growth 
Factor (VEGF), impairing the formation of new blood vessels and further reducing the ACL’s capacity for repair and regeneration. In the 
realm of Extracellular Matrix (ECM) Remodeling, the balance between Matrix Metalloproteinases (MMPs) and their natural inhibitors, 
Tissue Inhibitors of Metalloproteinases (TIMPs), is crucial. Chronic mechanical stress disrupts this balance by upregulating MMPs while 
downregulating TIMPs, tipping the scale toward ECM degradation. Enhanced MMP activity leads to increased breakdown of type I collagen 
and proteoglycans such as decorin and biglycan, which are essential for maintaining the viscoelastic properties of the ECM. The degradation 
of these components results in reduced tensile strength and elasticity of the ACL, making the ligament more susceptible to deformation 
and injury under normal physiological loads. Concurrently, Cellular Stress Responses are triggered by repetitive mechanical loading, which 
induces transient increases in intracellular calcium levels within ACL fibroblasts. Elevated calcium acts as a secondary messenger, initiating 
various intracellular signaling cascades, including the activation of the Mitogen-Activated Protein Kinase (MAPK) and Extracellular Signal-
Regulated Kinase (ERK) pathways. These pathways regulate a wide array of cellular processes, including proliferation, differentiation, and 
apoptosis. Activation of MAPK/ERK leads to changes in the expression of genes involved in cell survival, proliferation, and ECM production. 
However, chronic activation under persistent mechanical stress can shift the balance toward catabolic gene expression profiles, resulting 
in decreased cellular viability. Depending on the context and duration of signaling, ACL fibroblasts may undergo apoptosis or necrosis, 
thereby impairing the ligament’s capacity to maintain and repair the ECM. The integration of these four pathways—Inflammatory Pathways, 
Oxidative Stress Response, ECM Remodeling, and Cellular Stress Responses—creates a synergistic network that drives the degeneration of 
the ACL. Inflammatory signaling exacerbates ECM degradation by increasing MMP activity, while oxidative stress impairs vascular health 
and promotes apoptosis of essential fibroblasts. The imbalance in ECM remodeling further weakens the ligament’s structural integrity, and 
the cellular stress responses reduce the ligament’s ability to repair and regenerate damaged tissue. This cumulative effect of molecular and 
structural changes ultimately leads to the rupture of the ACL, especially when the ligament is subjected to additional mechanical loads that 
exceed its compromised capacity.
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At the cellular level, ligament fibroblasts interpret loading cycles through cytoskeletal 
adjustments and changes in nuclear morphology. During repeated loading, the cytoskeleton 
aligns stress fibers, improves actin-myosin tension, and maintains nuclear shape favorable 
for activating pro-tenogenic transcription factors like Scx and Mkx [304–306]. These patterns 
ensure balanced collagen turnover and steady ECM renewal. Appropriate unloading intervals 
allow cells to restore ATP and nutrient levels, recover from oxidative stress, and recalibrate 
growth factor signaling [307–309]. However, excessive unloading intervals or irregular load 
withdrawal can induce a gradual loss of tenogenic phenotype, undermining tissue integrity 
and stiffness [310–312].

Incorporating periodic rest phases between loading cycles provides opportunities for 
fibroblasts to upregulate antioxidant defenses, maintain mitochondrial function, and ensure 
a sustainable balance between reactive ROS production and detoxification [313–315]. This 
cyclical nature of mechanical input and metabolic restoration exemplifies the principle that 
ligaments thrive under conditions where loading and recovery follow a coordinated temporal 
pattern—one that also interfaces with circadian regulators like BMAL1 and CLOCK. These 
circadian mechanisms may help schedule ECM synthesis and degrade misfolded proteins in 
sync with daily fluctuations in mechanical activity, promoting both structural integrity and 
metabolic efficiency.

These insights emphasize that ligament healing and adaptation are governed by cycles 
of mechanical stimulation rather than a simple progression of clock time. Restoration 
of tissue homeostasis, prevention of degenerative changes, and optimization of collagen 
alignment hinge on properly dosing mechanical inputs and adjusting rest periods to cellular 
and molecular demands. The chronobiological perspective suggests that merely counting 
days or weeks post-injury is insufficient for guiding rehabilitation protocols. Instead, the 
cumulative number of mechanical load cycles, their magnitude, frequency, and recovery 
intervals should dictate the progression of therapy [316–318]. Aligning these mechanical 
cycles with the circadian oscillations governed by BMAL1 and CLOCK may further refine 
the outcome, making therapies more effective in modulating ECM turnover and cellular 
metabolism.

Therefore, rehabilitation should not be measured merely by time but by cycles of 
mechanical loads. By calibrating loading cycles to the ligament’s molecular and cellular 
rhythms—including circadian gene regulators—clinicians can better facilitate sustainable 
ECM remodeling, prevent maladaptive tissue responses, and ultimately enhance the 
durability and functionality of the healing ligament [319–321].

Implications for Tissue Engineering and Regenerative Medicine

The deepening understanding of how ligament cells transduce mechanical signals into 
molecular and cellular adaptations is providing a robust framework for advanced tissue 
engineering strategies. In engineered ligament constructs, controlling the mechanical 
environment at the cellular and molecular levels is key. By using bioreactors that apply 
physiologically relevant tensile strains to cell-seeded scaffolds, researchers can modulate 
integrin clustering and focal adhesion formation, guiding cytoskeletal organization and 
downstream signal transduction [83–85, 322–324]. This mechanical stimulation ensures 
that cells express the correct repertoire of ECM genes—upregulating collagens I and III, 
elastin, and proteoglycans—and that newly deposited collagen fibrils become properly 
aligned, ultimately conferring the scaffold with ligament-like mechanical properties.

Further refinement of scaffold materials can elevate these efforts. Biomaterials that 
incorporate integrin-binding domains (e.g., RGD motifs) or mimic the native ECM composition 
provide the essential molecular cues required for proper cell adhesion and mechanosensing 
[86–88, 325–327]. By presenting ligand-binding sites that selectively engage integrins 
expressed by ligament fibroblasts, these scaffolds facilitate the formation of focal adhesions 
and enhance mechanotransduction efficiency. As a result, signaling pathways such as MAPK 
(ERK, JNK, p38) and PI3K/AKT can be activated more precisely, fine-tuning gene expression 
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and ensuring that the developing construct attains the appropriate density, stiffness, and 
viscoelastic properties characteristic of native ligaments.

Equally important is the biochemical milieu. Delivering growth factors or cytokines—
such as TGF-β, FGF, PDGF, and VEGF—in a controlled manner can further stimulate ECM 
synthesis, improve collagen fibril organization, and support neovascularization [89–92, 
328–330]. Spatially and temporally controlled growth factor release can help synchronize 
cellular proliferation, differentiation, and matrix remodeling phases, thereby accelerating the 
ligamentization of tendon grafts or other engineered constructs. Such an approach mirrors 
in vivo regenerative processes, where growth factor gradients, mechanical load patterns, and 
cellular signals interact to shape tissue architecture and function [331].

Genetic and epigenetic interventions offer another frontier of possibility for guiding 
ligament cell fate at the molecular level. For instance, overexpressing Mkx, a transcription 
factor pivotal for tendon/ligament differentiation, can shift the transcriptome of progenitor 
cells or tendon-derived cells toward a ligamentous phenotype [93–95, 331–333]. Similarly, 
modulating microRNA (miRNA) profiles provides a means to fine-tune the balance between 
anabolic and catabolic processes. By controlling miRNAs that target collagen, MMPs, 
or growth factor signaling pathways, researchers can encourage stable ECM formation 
and prevent excessive matrix degradation or scar formation [334–336]. Such genetic or 
epigenetic “preconditioning” sets the stage for cells to respond optimally once they are 
placed under mechanical load in a bioreactor or implanted in vivo. With the right molecular 
switches flipped, the cells become more receptive to integrin-mediated signals, more 
efficient at organizing ECM, and better able to resist mechanical fatigue. Ultimately, these 
interventions strive to replicate the intricate molecular milieu and mechanical environment 
of native ligaments—where integrins, cytoskeletal tension, transcription factors, epigenetic 
marks, and growth factors interact seamlessly [337–339].

In animals studies the culmination of these efforts is the production of living ligament 
constructs that not only have the structural and mechanical integrity to replace damaged 
ligaments but also possess the molecular and cellular machinery to integrate with host 
tissues and adapt over time [340–342]. However, there is currently no scientific evidence 
available supporting this approach in humans.

Tendon–Ligament Force Transmission and Weight Savings

Tendons and ligaments transmit tensile forces across skeletal joints, effectively redirecting 
the path of force transmission while allowing varying degrees of joint motion. Biomechanically, 
these tissues feature densely packed, parallel-aligned collagen fibers (primarily type I 
collagen), hierarchically organized into microfibrils, fibrils, and fascicles, interspersed with 
smaller amounts of elastin and proteoglycans. This hierarchical organization confers both 
strength and flexibility. Ligaments generally function to limit the range of joint movement 
and stabilize the joint via their passive viscoelastic properties [367–369], whereas tendons 
couple muscle contraction to bone movement, often spanning one or more joints. From a 
molecular standpoint, collagen forms the core of both tendon and ligament structure. Each 
type I collagen molecule is composed of three polypeptide chains (two α1\alpha 1α1  chains 
and one α2\alpha 2α2  chain) that form a triple helix. These helices self-assemble into collagen 
fibrils, which further aggregate into collagen fibers. Covalent crosslinks, often catalyzed by 
lysyl oxidase, greatly enhance tensile strength and optimize viscoelastic behavior. The density 
and nature of these crosslinks help tune creep, hysteresis, and resilience under cyclical load. 
Smaller molecules such as decorin, biglycan, and fibromodulin (proteoglycans) help 
regulate fibril diameter, spacing, and collagen fibrillogenesis. Meanwhile, glycoproteins (e.g., 
tenascin-C, fibronectin) mediate cell adhesion and matrix organization. These constituents 
also facilitate water retention and lubrication, contributing to energy dissipation (damping) 
and overall tissue viscoelasticity. Fibroblasts (in tendon) or ligament fibroblasts (sometimes 
termed “ligamentocytes”) reside along and within the collagen fascicles. Their integrin 
receptors bind ECM molecules, translating mechanical stimuli (e.g., stretch, load, shear) 
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into intracellular signals via mechanosensitive pathways such as focal adhesion kinase 
(FAK), mitogen-activated protein kinase (MAPK), and Rho/ROCK signaling. These pathways 
orchestrate collagen synthesis, ECM remodeling, and adaptive changes in matrix composition 
in response to altered loading regimes.

Such cell–matrix interactions enable tendons and ligaments to undergo homeostatic 
remodeling, maintaining a balance between matrix deposition and degradation (including 
matrix metalloproteinase activity). This balance is crucial for sustaining tissue integrity over 
millions of loading cycles. Under tensile loads, tendons and ligaments can achieve a tensile 
failure strength of approximately 100–140 MPa and an elastic modulus in the range of 1.0–
1.5 GPa [370–373]. This combination of high strength and relatively low mass provides a 
significant advantage (i.e., “weight savings”) compared to muscle tissue, which is far denser 
and more metabolically active. Over a given length, one would require roughly 2, 800 times 
more muscle mass to transmit the same force that a tendon (or ligament) can carry [374, 375]. 
Consequently, natural selection frequently favors long, slender tendons or ligaments in distal 
limb segments, especially when fine control is less important than efficient force conduction 
over distance. Tendon stiffness determines how much the muscle fibers must shorten to 
produce a given movement. Stiffer tendons transmit force with minimal elongation, whereas 
more compliant tendons can store and release elastic energy. During activities like running 
or hopping, this compliance can reduce muscle fiber length changes, thereby decreasing 
metabolic cost.

By contrast, ligaments generally have slightly lower stiffness and allow controlled 
elongation, limiting joint excursion while passively contributing to joint stability. They also 
reduce the need for active muscular stabilization in certain ranges of motion, thus saving 
metabolic energy.

Extreme examples of the ligamentous strategy appear in the distal limbs of horses and 
other ungulates (e.g., the digital suspensory ligament), where muscle fibers are vestigial or 
absent [374, 376–378]. These passive structures transmit force over long distances with 
minimal mass, significantly lowering energy costs required for posture and locomotion. 
Humans exhibit a less extreme but still notable reliance on tendons—particularly the 
Achilles tendon—for storing and releasing elastic energy during gait.

Because tendons and ligaments are metabolically inert in terms of direct ATP 
consumption, they reduce the overall cost of movement. During gait, tendons can store 
elastic energy when stretched and release it upon recoil, alleviating the need for muscle 
fibers to shorten extensively. This mechanism is central to the high efficiency observed in 
running animals and humans [379–381]. If a tendon is sufficiently compliant, the muscle 
attached can operate more isometrically, producing force at an optimal fiber length without 
large length changes. This reduces the metabolic cost of generating force compared to 
fibers undergoing significant contractions. Over many strides or steps, such energy savings 
accumulate, enabling greater endurance or speed. A trade-off arises between compliance 
for energy saving and the capacity for precise control over limb position. Longer, more 
compliant tendons can introduce delays or oscillations due to the elasticity in the system—
particularly relevant when reflex delays (tens of milliseconds) are considered. However, a 
moderate level of tendon compliance can actually help buffer high-frequency perturbations 
and refine control of low-force tasks by absorbing sudden shocks [371, 382]. Consequently, 
muscle–tendon architectures vary across anatomical regions and species, reflecting different 
functional priorities (e.g., distal vs. proximal limb muscles).

Stress-Strain Curve in Ligaments

Ligaments exhibit a distinctive stress-strain curve that emerges from a sophisticated 
interplay of molecular components and cellular signaling pathways (Fig. 5). These 
mechanisms collectively enable ligaments to stabilize joints under various loads while 
allowing the flexibility required for normal movement [383]. Expanding on traditional views 
of collagen-dominated mechanics, recent insights reveal that ion channels, mechanosensing 
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molecules, and intricate molecular crosslinking processes are all essential for ligament health 
and function [384]. The primary load-bearing framework of ligaments is built on collagen, 
a protein that organizes into a triple-helical structure called tropocollagen [385]. Multiple 
tropocollagen molecules align into fibrils, which are further grouped into fibers. Ligament 
collagen is predominantly Type I, conferring high tensile strength, with smaller amounts of 
Type III contributing to tissue repair and structural support. A hallmark of collagen fibrils 
is their crimp pattern, a wave-like undulation that is straightened when tension is first 
applied. During the initial “toe” region of the stress-strain curve, this uncrimping accounts 
for a notable increase in strain with only a modest rise in stress. As loading continues, 
collagen fibrils become fully aligned and stiffen the tissue, creating the linear (elastic) region 
where stress increases sharply with strain [386]. Collagen’s mechanical integrity also relies 
on covalent crosslinks. Enzymatic crosslinks mediated by lysyl oxidase anchor collagen 
molecules together, fortifying fibrils against mechanical forces. Over time, non-enzymatic 
glycation (through advanced glycation end-products, or AGEs (Advanced Glycation End 
Products) can further increase crosslink density [387]. This extra crosslinking often stiffens 
ligaments but reduces their extensibility, potentially heightening injury risk and limiting 
joint mobility, especially in aging tissues or in metabolic conditions such as diabetes [388].

Although collagen is the principal load-bearing component, proteoglycans—comprising 
a protein core decorated with GAG chains—play critical supporting roles [389]. These 
negatively charged GAGs attract water and cations, creating a swelling pressure that helps 
maintain fibril spacing and overall tissue hydration. Water, which makes up the majority of 
ligament mass, not only lubricates collagen fibrils but also facilitates nutrient transport and 
dissipates mechanical energy under repeated loading [390]. Glycoproteins like fibronectin 
and tenascin further organize fibrillar structures and connect cells (primarily fibroblasts) to 
the extracellular matrix. Although they contribute less to bulk tensile strength than collagen, 
they help mediate tissue remodeling and repair processes after microinjury [391]. Beyond 
the structural proteins, ligaments contain resident fibroblasts (sometimes referred to as 
ligament cells) that continuously monitor and respond to mechanical cues. Mechanosensitive 
ion channels embedded in fibroblast membranes act as molecular “switches,” transducing 
mechanical forces into electrochemical signals that guide gene expression and matrix 
remodeling. Certain TRP subfamily members (e.g., TRPV4) open in response to shear stress 
or stretch, allowing calcium ions to flow into cells [392]. Increased intracellular calcium 
can trigger a cascade of signaling events that influence collagen synthesis, proteoglycan 
turnover, and cytoskeletal reorganization. Piezo1 and Piezo2 are large mechanosensitive 
ion channels that open upon membrane deformation. When ligaments are subjected to 
load, stretch-induced Piezo channel activation modulates the release of second messengers, 
leading to changes in collagen gene expression and cellular proliferation rates. Although not 
strictly ion channels, integrins—transmembrane receptors linking the extracellular matrix 
to the cytoskeleton—work in tandem with these channels. As integrins sense tension within 
collagen fibers, they help coordinate ion channel gating, generating complex feedback loops 
that ensure tissue homeostasis [393]. Through these ion channel pathways, fibroblasts can 
sense even small changes in the mechanical environment, adjusting matrix production and 
degradation to meet physiological demands. Excessive or insufficient mechanical stimulation 
can shift this balance, potentially weakening the ligament or promoting fibrotic changes 
[394].

Ligaments are viscoelastic: their response to load varies over time due to fluid 
movement and molecular rearrangements within the matrix [395]. Water and ions within 
the proteoglycan-rich network shift as load increases or decreases, allowing ligaments to 
exhibit phenomena such as creep (gradual elongation under a constant load) and stress 
relaxation (reduced stress under a constant strain). Collagen molecules can slide and 
reorient slightly when loaded, enabled by the glycoprotein and proteoglycan interfaces. 
Over repeated loading cycles, energy is lost (hysteresis) as collagen and matrix components 
continually adjust. The gating and inactivation rates of mechanosensitive ion channels 
also contribute to time-dependent behavior [396]. Rapid changes in tension may produce 
spike-like calcium influxes, while slower deformations can lead to more prolonged changes 
in channel activity and cell signaling. When load exceeds the ligament’s capacity, plastic 
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Fig. 5. Depicts the stress-strain 

curve of ligament tissue, highlighting 

the progressive molecular and 

structural changes that occur as 

ligaments are subjected to varying 

degrees of mechanical loading. The 

Fig. is segmented into five distinct 

stages, each representing a critical 

phase in the ligament’s response 

to mechanical stress, ranging from 

appropriate loading that promotes 

tissue homeostasis to excessive strain 

leading to ligament rupture. At the 

onset, appropriate mechanical loading, 

characterized by cyclic tensile and 

shear forces below the threshold 

for immediate structural failure, 

activates the PIEZO1 signaling pathway 

within ligament fibroblasts. PIEZO1, 

a mechanosensitive ion channel, 

responds to mechanical stress by 

facilitating the influx of calcium ions 

(Ca²⁺) into the cells. This calcium influx 

triggers downstream signaling cascades involving Calcium/Calmodulin-Dependent Kinases (CaMKs) and Protein Kinase C (PKC), which 

subsequently activate transcription factors such as CREB and YAP/TAZ. These transcription factors enhance the expression of genes 

responsible for extracellular matrix (ECM) synthesis, including type I collagen (COL1A1 and COL1A2), elastin, and proteoglycans like 

decorin and biglycan. The upregulation of these ECM components reinforces the ligament structure, improving its tensile strength and 

elasticity, thereby maintaining tissue homeostasis and preparing the ligament to better withstand future mechanical loads. As mechanical 

loading intensifies and strain exceeds the deviation point, the ligament’s elastic behavior becomes disrupted. Excessive stress leads to 

the partial unfolding of collagen triple helices and the disruption of hydrogen bonds that stabilize collagen structures. This molecular 

unfolding reduces the tensile strength of collagen fibers, while proteoglycans undergo stretching, altering their interactions with collagen 

and compromising ECM organization. Concurrently, elevated mechanical stress activates the Mitogen-Activated Protein Kinase (MAPK) 

and Extracellular Signal-Regulated Kinase (ERK) pathways, as well as the NF-κB pathway, which upregulates pro-inflammatory cytokines 

such as IL-1β and TNF-α. These molecular changes initiate catabolic processes that tilt the balance towards ECM degradation and hinder 

anabolic repair mechanisms, marking the transition from elastic to plastic deformation of the ligament. Continuing to endure mechanical 

loading beyond the deviation point, collagen fibers attempt to compensate for the loss of load transfer mechanisms by sliding and 

stretching at the molecular level. This compensatory behavior generates shear forces that further disrupt the organized alignment of 

collagen fibrils. The increased shear stress induces the activation of Matrix Metalloproteinases (MMP-2 and MMP-9), which specifically 

target denatured collagen and gelatin, accelerating ECM degradation. Additionally, mitochondrial dysfunction induced by excessive 

mechanical stress elevates the production of Reactive Oxygen Species (ROS), contributing to oxidative damage of ECM proteins and cellular 

components. The combined effect of heightened MMP activity and ROS-mediated damage leads to the gradual degradation of collagen 

fibers, weakening the structural integrity of fiber bundles and setting the stage for potential rupture. As mechanical loading persists, the 

gradual degradation of collagen culminates in the rupture of fiber bundles. Sustained high levels of mechanical stress maintain elevated 

expression of MMP-1 and MMP-13, enzymes that actively degrade type I and type II collagen. Simultaneously, the expression of Tissue 

Inhibitors of Metalloproteinases (TIMPs) is reduced, diminishing their ability to counteract MMP activity and allowing unchecked ECM 

degradation. The oxidative environment and pro-inflammatory cytokines activate caspases and regulate BAX/Bcl-2 proteins, leading to 

programmed cell death (apoptosis) of ligament fibroblasts. The loss of viable fibroblasts impairs the ligament’s capacity to synthesize 

and maintain ECM components, resulting in the fragmentation of the collagen matrix and the eventual rupture of fiber bundles under 

continued mechanical strain. Ultimately, accumulated damage from repetitive microstrains below the immediate damage threshold leads 

to the attainment of a critical damage point. At this juncture, the ligament’s ability to remodel and repair the damaged matrix becomes 

severely compromised. Persistent strain disrupts collagen crosslinks and depletes glycosaminoglycans (GAGs), reducing ECM plasticity 

and limiting matrix flexibility. The apoptotic loss of fibroblasts and the induction of cellular senescence further diminish ECM synthesis 

and maintenance, preventing effective repair of microinjuries. Sustained pro-inflammatory cytokine release perpetuates a catabolic 

environment, exacerbating ECM degradation and inhibiting anabolic processes necessary for ligament healing. Once the critical damage 

threshold is surpassed, the ligament loses its capacity to undergo necessary plastic deformation, rendering it highly susceptible to sudden 

rupture even under normal physiological loads. This culmination of molecular and structural degradation underscores the importance of 

managing mechanical loading to prevent overload-related tendon and ligament disorders. Fig. adapter from Eisner LE et al., 2022).
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(irreversible) deformation and ultimately tissue failure can ensue. Excessive stretching or 
repetitive loading can break the covalent bonds linking collagen molecules, leading to small-
scale microtears. As more crosslinks fail, fibrils lose their aligned structure and the matrix 
architecture becomes compromised. Activated fibroblasts sense the tissue damage through 
mechanosensitive channels, potentially upregulating collagen and proteoglycan production 
in an attempt at repair [397]. However, prolonged or severe overload can overwhelm these 
responses, resulting in macroscopic tears.

Ligaments do not remain static; they adapt over time and in response to metabolic factors 
[398]. Aging typically brings heightened collagen crosslink density, reduced proteoglycan 
content, and more frequent non-enzymatic glycation, causing ligaments to become stiffer 
and more prone to failure. Diabetes and other metabolic disorders can accelerate glycation, 
impairing ligament elasticity and contributing to joint dysfunction [399]. Moreover, age- or 
disease-related changes in ion channel expression can impair fibroblast mechanosensitivity, 
potentially diminishing the tissue’s capacity to remodel and repair [400]. By recognizing 
how these molecular features intersect with mechanical load, researchers and clinicians gain 
critical insights for developing strategies—ranging from pharmacological modulation of ion 
channels to targeted physical therapies—that preserve ligament integrity and enhance long-
term joint function.

Ligament Enthesis: Molecular and Mechanical Transition

The enthesis is a highly specialized anatomical region where ligaments (and tendons) 
anchor into bone, enabling a seamless transition between soft and hard tissues (Fig. 6). This 
interface not only confers mechanical resilience by dispersing stress but also embodies a 
sophisticated molecular and cellular organization essential for tissue homeostasis and repair 
[401]. Emerging insights from molecular and cellular biology underscore the complexity 
of enthesis formation and maintenance, with transcription factors (e.g., Scleraxis/Scx, 
Sox9, Gli-1), growth factors (e.g., GDF-5), and gap junction proteins (Connexins) playing 
pivotal roles in controlling cell fate, ECM synthesis, and mechanotransduction [402, 403]. 
Scleraxis is a basic helix-loop-helix transcription factor that is widely regarded as a master 
regulator of tendon and ligament development. Its expression is predominantly associated 
with tendon/ligament progenitor cells, where it drives the synthesis of type I collagen and 
tenascin-C, among other tendon-specific ECM proteins [404]. In the context of the enthesis, 
Scx-expressing progenitor cells migrate toward the insertion site and initiate the formation 
of a dense collagen matrix. As mechanical loads intensify, Scx expression can be modulated 
by integrin-based signaling, ensuring that the enthesis region adapts collagen organization 
to withstand tensile forces [405].

Within the fibrocartilaginous region of the enthesis, the transcription factor Sox9 
becomes increasingly important. Sox9 is traditionally recognized as a key regulator of 
chondrogenesis and is essential for the expression of type II collagen and aggrecan [406]. 
In the transitional zone of the enthesis—where fibrocartilage resides—Sox9 activity helps 
maintain a phenotype that is partly chondrogenic, providing resistance to compressive 
forces. This chondrocyte-like phenotype is crucial for reducing stress concentrations at the 
junction where the ligament transitions into mineralized tissue [407].

Recent studies point to a critical role of Hedgehog signaling in enthesis morphogenesis 
and maintenance, particularly via the transcription factor Gli-1. Gli-1 is a downstream effector 
of Sonic hedgehog (Shh) or Indian hedgehog (Ihh) signaling, orchestrating cell proliferation, 
differentiation, and survival in various skeletal tissues [408]. In the enthesis, Gli-1-positive 
cells can represent a progenitor population that contributes to ongoing remodeling. These 
progenitors respond to mechanical cues by modulating their differentiation into fibroblast-, 
chondrocyte-, or osteoblast-like cells, thus preserving the zonal composition of the ligament-
to-bone interface [408, 409]. GDF-5, a member of the transforming growth factor-β (TGF-β) 
superfamily, has garnered attention for its essential role in joint and tendon/ligament 
development. In the enthesis, GDF-5 is implicated in stimulating progenitor cell recruitment 
and chondrogenic differentiation, working synergistically with other factors such as bone 
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Fig. 6. Molecular Signaling in the Enthesis and Its Diverse Cell Populations. The enthesis is a biomechanically 
graded interface where tendons or ligaments merge seamlessly with bone. This transition occurs across 
distinct zones—fibrous, fibrocartilaginous, and mineralized—that are maintained by specialized cell 
populations (fibroblast-, chondrocyte-, and osteoblast-like cells, respectively). Numerous molecular signals 
guide the development, remodeling, and repair of these cell populations, ensuring that the enthesis can 
withstand multi-axial loading and mitigate stress concentrations. Transcription Factors and Cell Fate 
Scleraxis (Scx): A master regulator of tendon and ligament development, Scx is vital for synthesizing 
type I collagen and tendon-specific proteins. Its expression is regulated by mechanical cues via integrin-
based signaling, promoting collagen organization in response to tensile forces.  Sox9: Primarily associated 
with chondrogenesis, Sox9 drives the formation of type II collagen and aggrecan, giving fibrocartilage its 
compressive resistance. Within the enthesis, Sox9 fosters the chondrocyte-like phenotype essential for 
dampening stress at the transition to mineralized tissue.  Gli-1: Functioning downstream of Hedgehog 
signals, Gli-1-positive progenitors can differentiate into fibroblasts, chondrocytes, or osteoblasts. This 
dynamic capacity preserves the zonal architecture, allowing ongoing adaptation to mechanical stimuli.  
Growth Factors and Their Roles GDF-5: A TGF-β superfamily member, GDF-5 enhances progenitor cell 
recruitment and chondrogenic differentiation. In synergy with BMPs and FGFs, GDF-5 promotes the 
formation of fibrocartilage, proteoglycan deposition, and eventual mineralization—key for a stable enthesis.  
Other Signaling Molecules (e.g., TGF-β, BMPs, FGFs): These gradients guide each enthesis zone by modulating 
anabolic and catabolic processes, harmonizing the production of specialized ECM components.  Gap Junction 
Communication Connexins (Cx43): Gap junctions formed by connexins allow direct exchange of ions and 
small signaling molecules (e.g., cAMP, IP3) across cells. This intercellular communication is crucial for 
synchronizing responses to mechanical stress, coordinating ECM turnover, and preventing localized tissue 
failure. ECM Stratification and Mechanotransduction: ECM Composition: Type I collagen predominates in 
the tensile ligament region, while type II collagen, type X collagen, and proteoglycans (aggrecan) rise in 
the fibrocartilage zone, adapting to compressive loads. At the mineralized front, hydroxyapatite integrates 
with collagen, forming calcified fibrocartilage that transitions to bone.  Mechanical Signaling: Integrin-based 
focal adhesions anchor cells to the ECM and convert mechanical stimuli into biochemical signals. These 
cues influence transcription factor activity (Scx, Sox9, Gli-1), balancing ECM synthesis and degradation and 
ensuring the tissue adapts to shifting load demands.  Overall, the enthesis’s mechanical resilience relies 
on finely tuned molecular crosstalk among various cell types. Transcription factors like Scx, Sox9, and Gli-
1 orchestrate lineage-specific ECM production, while GDF-5 and other growth factors steer progenitor 
differentiation. Gap junctions enable rapid signal spread, creating a synchronized response to mechanical 
stress. Together, these molecular and cellular mechanisms preserve enthesis integrity, enabling fluid load 
transfer and robust tissue repair when injury occurs.)
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morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs) [410]. Experimental 
models suggest that GDF-5 can promote the formation of fibrocartilaginous zones, enhance 
proteoglycan deposition, and accelerate the maturation of the mineralized region, all of 
which are key to a stable enthesis structure [402].

Increasing evidence indicates that enthesis cells rely on gap junction-mediated 
communication to synchronize matrix synthesis and degradation across different zones. 
Connexins (particularly Connexin 43, Cx43) form gap junction channels that allow direct 
intercellular exchange of ions and small molecules, including second messengers like 
cyclic AMP (cAMP) and inositol triphosphate (IP3) [409]. This connectivity is thought to 
be crucial for propagating signals that inform cells of mechanical changes, orchestrating a 
collective response in matrix remodeling. Disruptions in gap junction signaling could lead 
to maladaptive remodeling and increased susceptibility to enthesopathy or enthesis-related 
injuries [403]. The ECM at the ligament enthesis is uniquely stratified to handle multiple 
loading modes. The ligament proper is dominated by type I collagen fibers, which confer 
tensile strength. Progressing toward the fibrocartilaginous zone, type II collagen, type 
X collagen, and proteoglycans like aggrecan become more abundant [401, 406]. These 
components increase the tissue’s capacity to resist compressive forces. At the mineralized 
interface, hydroxyapatite crystals intercalate with collagen fibers, creating a calcified 
fibrocartilage region that gradually transitions into subchondral bone [405]. Each of these 
zones is maintained by a discrete population of cells—fibroblast-like in the ligament region, 
chondrocyte-like in the fibrocartilage, and osteoblast lineage cells in the bone—which are 
regulated by molecular gradients involving TGF-β, FGFs, BMPs, and other signaling pathways 
[407]. The interplay between Scx, Sox9, Gli-1, and GDF-5 ensures that cells in each zone 
differentiate appropriately and produce ECM components best suited to the mechanical 
environment [408, 410].

The mechanical environment of the enthesis demands precise modulation of cell 
behavior. Mechanical loads generated by joint movement are transmitted to enthesis-
resident cells, where they are converted into biochemical signals—a process known as 
mechanotransduction [404]. Integrin-based focal adhesions anchor the cytoskeleton to ECM 
fibers, enabling cells to sense tension or compression. These signals feed into transcriptional 
networks involving Scx, Sox9, and Gli-1, adjusting the balance between anabolic (ECM 
synthesis) and catabolic (ECM breakdown) activities [402].

Further coordination is facilitated by gap junctions composed of Connexins, which 
allow neighboring cells to share signaling molecules and ions [403]. This rapid intercellular 
communication ensures that cells within different zones of the enthesis respond cohesively 
to shifts in mechanical load, thereby preventing localized failure and tissue damage. Finite 
element analyses and in vivo imaging consistently illustrate that the enthesis is not an 
abrupt union of two tissues but rather a mechanically graded interface [407]. Such gradation 
distributes tensile, compressive, and shear forces more evenly across zones, thereby reducing 
stress concentrations at any single point [401]. The fibrocartilaginous region, in particular, 
acts as a stress buffer, aided by Sox9- and GDF-5-driven chondrogenic differentiation that 
boosts proteoglycan content and compressive strength [405, 410].

When mechanical loading patterns change—due to injury or altered joint mechanics—
Scx-positive progenitors in the soft tissue region can be activated to reorganize collagen fiber 
orientation, while Gli-1 and Sox9 pathways adapt the fibrocartilaginous and bone regions 
to shifting loads [408, 409]. If these adaptive processes are dysregulated (as in enthesitis, 
osteoarthritis, or chronic overuse), pathological remodeling ensues and may compromise 
the integrity of the entire insertion site [402].

Future Directions

Future research is poised to significantly expand our molecular and cellular understanding 
of ligament biology. Single-cell transcriptomics and advanced proteomic profiling will unravel 
the heterogeneity of ligament cell populations, identifying distinct subpopulations that 



Cell Physiol Biochem 2025;59:252-295
DOI: 10.33594/000000773
Published online: 30 April 2025 277

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2025 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Stańczak et al.: Ligament Cell Biology: Effect of Mechanical Loading

respond differently to mechanical stimuli [96–98, 343–345]. By examining how individual 
cells regulate integrin expression, growth factor receptors, and ECM-remodeling enzymes, 
researchers can pinpoint molecular targets that either enhance ligament resilience or drive 
degenerative changes. Similarly, high-throughput proteomic analyses can clarify how post-
translational modifications (e.g., phosphorylation of FAK or other focal adhesion proteins) 
and epigenetic regulators (e.g., chromatin-remodeling complexes and miRNAs) shape cell 
fate decisions under various loading regimens [346–348].

Concurrent advances in imaging technologies will shed light on how these molecular 
modifications manifest in tissue architecture. Super-resolution microscopy, for instance, 
can provide nanoscale visualization of integrin clusters, focal adhesions, and cytoskeletal 
filaments, enabling researchers to link molecular signaling events directly to changes in cell 
shape and ECM organization [99–101, 349–351]. Second-harmonic generation imaging and 
other nonlinear optical methods can reveal collagen fiber arrangements in unprecedented 
detail, correlating molecular-level ECM synthesis and alignment with mechanical properties 
[352–354]. Such insights can guide the development of scaffolds and rehabilitation programs 
that precisely modulate cell–ECM interactions.

The integration of computational modeling and machine learning offers a powerful 
avenue for predicting ligament cell responses to various mechanical loads. By incorporating 
data from single-cell omics, proteomics, and high-resolution imaging, computational models 
can simulate how alterations in integrin-binding motifs, growth factor delivery, or microRNA 
expression affect tissue-level outcomes [102–104, 355–357]. Machine learning algorithms 
can identify complex patterns in these large datasets, allowing researchers and clinicians 
to forecast the trajectory of ligament healing, the effectiveness of specific therapeutic 
interventions, or the optimal mechanical environment for engineered constructs. Tailoring 
patient-specific rehabilitation protocols and graft-preconditioning strategies becomes 
feasible as these predictive tools advance, ultimately improving clinical outcomes. As 
we understand more about how molecular signaling pathways, cellular responses, and 
mechanical inputs interact, new therapeutic strategies will emerge. Better management of 
ligament injuries, more efficient ACL graft ligamentization, and refined regenerative medicine 
techniques will hinge on these molecular insights [358–360]. Clinicians may soon be able to 
prescribe precision rehabilitation programs that fine-tune mechanical loading parameters 
based on patient-specific molecular signatures. Similarly, tissue engineers can precondition 
grafts at the molecular level—overexpressing key transcription factors, adjusting microRNA 
profiles, or delivering growth factors—to ensure that implanted constructs rapidly adapt to 
the in vivo environment, producing a functional ligament capable of bearing physiological 
loads [361–363].

In essence, harnessing these molecular and cellular insights will redefine our approach 
to ligament repair and regeneration. By integrating cutting-edge omics data, imaging 
technologies, computational models, and molecular engineering tools, we can move 
toward a future where ligament injuries are managed with a level of precision and efficacy 
previously unattainable. This systems-level understanding will bridge the gap between basic 
mechanobiological research and clinical application, ultimately restoring musculoskeletal 
function and improving quality of life for patients with ligament injuries [364–366].

Conclusion

This review underscores the complexity and precision with which ligament tissues 
maintain structural integrity, adapt to their mechanical environment, and respond to 
injury. At the center of ligament homeostasis lies a delicate interplay between mechanical 
stimuli, molecular signaling pathways, and cellular phenotypes. Ligament fibroblasts, 
or ligamentocytes, continuously interpret and translate mechanical load patterns into 
biochemical responses via integrin-mediated focal adhesions, mechanosensitive ion channels, 
and associated mechanotransduction networks. The downstream signaling cascades—
MAPKs, PI3K/AKT, and others—fine-tune gene expression, guiding collagen fibrillogenesis, 
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ECM composition, and cytoskeletal organization. This robust molecular machinery ensures 
that ligaments are not passive structures but highly responsive tissues capable of dynamic 
remodeling.

Distinct from tendons, ligaments must accommodate multidirectional forces. Their 
unique ECM composition, richer in elastin and proteoglycans, provides compliance and the 
ability to absorb and dissipate complex stresses. Appropriate mechanical loading preserves 
collagen alignment and ECM integrity, stabilizing the ligament cell phenotype. Conversely, 
insufficient or excessive loading triggers inflammatory mediators, catabolic enzymes, 
and altered transcriptional and epigenetic landscapes, leading to degenerative changes, 
scar formation, and compromised mechanical properties. Stress shielding and repetitive 
microtrauma further highlight the importance of balanced mechanical cues. Without 
the correct level of tension, ligament fibroblasts cannot maintain load-bearing collagen 
networks, predisposing the tissue to fibrocartilaginous transformation, laxity, or sudden 
mechanical failure.

Armed with emerging insights into growth factor signaling, cytokine modulation, 
epigenetic control, and transcriptional regulation, researchers and clinicians can now 
envision more sophisticated interventions. By modulating integrin ligands, harnessing 
growth factor gradients, controlling microRNA expression, or applying gene editing tools, it 
becomes possible to “reprogram” tendon grafts to adopt ligamentous phenotypes, accelerate 
ACL graft ligamentization, or stabilize degenerative ligaments. Moreover, mechanical 
stimulation protocols informed by chronobiological principles—calibrating loading cycles 
rather than relying on static timelines—hold promise for more effective rehabilitation 
strategies. Such approaches recognize that tissue healing and adaptation depend not solely 
on the passage of time, but on the cumulative number of load-rest cycles, their intensity, and 
their coordination with the tissue’s molecular rhythms. These insights directly impact tissue 
engineering and regenerative medicine. Designing scaffolds equipped with integrin-binding 
motifs and mechanical cues, delivering controlled growth factors, and employing bioreactors 
that replicate physiological loading patterns can produce constructs that emulate native 
ligament properties at the molecular, cellular, and structural levels. By preconditioning cells 
with genetic or epigenetic interventions, scaffolds can be “tuned” to ensure optimal ECM 
organization, mechanical resilience, and integration with host tissues post-implantation.

Looking toward the future, advanced single-cell transcriptomics, proteomics, and 
imaging technologies will deepen our comprehension of ligament cell heterogeneity and 
molecular dynamics. Combined with computational modeling and machine learning, 
these data-rich approaches will enable predictive modeling of healing trajectories and 
patient-specific therapies. Clinicians may soon customize rehabilitation protocols based on 
molecular “signatures” of a patient’s ligament cells, optimizing load regimens to prevent 
degenerative cascades and enhance repair. However, it is important to note that there is 
no single universally optimal mechanical loading regimen; instead, a deep understanding 
of cellular biology can enhance clinicians’ confidence in selecting targeted rehabilitation 
approaches and preventing future injuries.

Ultimately, the convergence of molecular mechanobiology, engineering principles, and 
clinical insight is poised to transform ligament care. However, it is important to note that 
these concepts remain largely theoretical, as the majority of supporting evidence currently 
comes from animal models or laboratory-based studies, which may not fully reflect the 
complexities of human physiology and clinical practice. By bridging fundamental research 
and clinical application, we can foster a new era of precision medicine in orthopedics—one 
in which ligament injuries are managed through biologically informed, biomechanically 
sound strategies that restore function, reduce reinjury risk, and significantly improve patient 
outcomes.
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