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Abstract
Thiazide, thiazide-like, and loop diuretics are primarily known for inhibiting members 
of the SLC12A family of Cl– transporters, which include the Na+Cl– cotransporter (NCC), 
Na+K+2Cl– cotransporters (NKCC1 and NKCC2) and K+Cl– symporters (KCC1-4). While the main 
pharmacological effect of these diuretics is diuresis, achieved by promoting the excretion 
of excess water and salt through the kidneys, they have intriguing pharmacological effects 
beyond their traditional ones which cannot be solely attributed to their effects on renal salt 
transport. Of particular interest is their role in modulating inflammatory processes. These 
diuretics appear to exert both pro- and anti-inflammatory effects, potentially by influencing 
various pathways involved in immune responses. For example, NKCC1 has been implicated 
in the regulation of pro-inflammatory cytokines, such as interleukin-1β (IL1β), interleukin-8 
(IL8) and tumor necrosis factor α (TNFα), which are critical mediators of immune cell activity 
during inflammation. The underlying mechanisms through which NKCC1 contributes to 
inflammation may involve key signaling pathways, such as that mediated by the nuclear factor 
kappa B (NFκB). This pathway is crucial for the activation and assembly of the inflammasome, 
as well as for regulating the phagocytic activity of immune cells. In addition, NKCC1 can 
control (or be controlled) by reactive oxygen species and oxidative stress, which contribute 
to the pathogenesis of various inflammatory conditions as well. Diuretics may help mitigate 
inflammation-related tissue damage by scavenging reactive oxygen species and boosting 
antioxidant defenses, thereby restoring redox balance in inflamed tissues. Despite these 
intriguing effects, the precise molecular pathways through which thiazide, thiazide-like and 
loop diuretics may modulate inflammatory responses remain poorly understood and warrant 
further investigation. This aspect of their pharmacological profile highlights their potential for 
therapeutic use beyond the scope of traditional diuretic functions.
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Introduction

Inflammation, often perceived negatively today, is frequently associated with damage 
and disease [1, 2]. This view is not necessarily tied to the word’s etymology (from the Latin 
inflammare, meaning “to set on fire”) but rather stems from a loose understanding of its 
biological role. We often overlook the concept established in 1859 by Rudolf Virchow, which 
emphasized that inflammation is a natural, typically beneficial response that frequently 
results in restitutio in integrum i.e., the restoration of the tissue to its original state [3]. 
Virchow noted that inflammation does not occur without irritation (irritatio) and that the 
affected organ experiences functional impairment (functio laesa). He also described several 
physiopathological outcomes triggered by the initial insult. These include increased cell 
volume due to active nutrient and water uptake, hypertrophy, cellular division leading to 
proliferation and swelling, often accompanied by the local accumulation of inflammatory 
cells, fatty degeneration and edema. Such processes, when chronic, can sometimes result 
in irreversible cell damage and death. This series of events, for instance, mirrors our 
modern understanding of the pathophysiology and progression of atherosclerosis, a chronic 
inflammatory condition characterized by endothelial dysfunction (functio laesa) and 
associated hypertension, dyslipidemia, hyperglycemia and insulin resistance (irritatio). It is 
now widely accepted that the first event leading to local vascular damage in atherosclerosis 
in response to those irritants, is the recruitment of monocytes, monocyte-derived 
macrophages and T cells which initiate and sustain local inflammation. This eventually leads 
to lipid accumulation within cells (e.g., foam cells) and in extracellular spaces. Over time, 
these factors promote local proliferation of smooth muscle cells, accumulation of connective 
tissue, and thickening and hardening of the blood vessels i.e., hallmarks of atherosclerosis 
(and inflammation) [4].

Given this particular context and broad understanding of inflammation, it is reasonable 
to hypothesize that hypertension is directly linked to inflammation, an association that is 
now accepted [5-8]. Hypertension is a well-established risk factor for cardiovascular disease 
[9] and a key component of the metabolic syndrome (MetS), a cluster of independent 
risk factors for type 2 diabetes (T2D) and cardiovascular mortality. These factors include 
insulin resistance, glucose intolerance, obesity and dyslipidemia [10, 11]. Moreover, 
MetS is characterized by chronic tissue inflammation [12, 13], likely driven by subtle or 
pronounced activation of inflammatory mediators, dysfunctional macrophages, neutrophils 
and lymphocytes [14], oxidative stress [15] and impaired vascular function [16-19]. 
Consequently, antihypertensive medications, like sulfonamide diuretics, may directly or 
indirectly influence pro- or anti-inflammatory responses [20, 21]. Specifically, thiazides 
(e.g., hydrochlorothiazide, one of the most commonly prescribed drugs), thiazide-like 
diuretics (e.g., chlortalidone, metolazone, indapamide) and loop diuretics (e.g., furosemide, 
bumetanide, torsemide, ethacrynic acid), are frequently prescribed to manage hypertension 
and associated conditions [22, 23]. Thiazides and thiazide-like diuretics are primarily used 
for hypertension, while loop diuretics are preferred in more severe cases, particularly when 
rapid diuresis is necessary. Within these therapeutic frameworks, sulfonamide diuretics may 
contribute to clinical outcomes by directly or indirectly modulating local and/or systemic 
inflammatory responses.

The known pharmacological targets of thiazides, thiazide-like and loop diuretics 
include members of the SLC12A family of ion transporters, which comprise seven cation-
chloride symporters. These are SLC12A1-7 [24]; SLC12A8, a nicotinamide mononucleotide 
carrier [25]; and SLC12A9, a polyamine transporter with the potential to interact and inhibit 
SLC12A2 [26, 27]. These transmembrane proteins share similar molecular structures [28-
32] and most of what we know about their physiological function is related to their ability to 
move Cl⁻, Na⁺, and/or K⁺ across cell membranes to quickly regulate cell volume and maintain 
the balance of ions within cells [24]. Partially based on that, SLC12A family members are 
typically categorized based on their ion transport function i.e., the Na+K+2Cl– cotransporters 
NKCC1 (SLC12A2) and NKCC2 (SLC12A1), the Na+Cl− cotransporter NCC (SLC12A3), and 
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the K+Cl− cotransporters KCC1 (SLC12A4), KCC2 (SLC12A5), KCC3 (SLC12A6), and KCC4 
(SLC12A7) [33, 34]. While there are numerous splice variants produced by SLC12A genes 
[35, 36], it is generally accepted that many of them are, to varying extents, sensitive to specific 
sulfonamide diuretics. Notably, sulfonamide diuretics exert their established pharmacological 
effects by inhibiting the transport function of NCC and NKCC2, respectively, in the kidneys 
[24, 37]. Since these two cotransporters are abundantly expressed in that organ [38, 39], 
NCC and NKCC2 are usually regarded as kidney-specific, thiazide- and bumetanide-sensitive 
cotransporters, respectively [40-44]. Nevertheless, it is now relatively clear that thiazides, 
thiazide-like and loop diuretics may have clinically important effects independent of their 
renal targets [45-49]. In fact, bumetanide at low and furosemide at high concentrations are 
potent inhibitors of the ubiquitously expressed NKCC1 variants (NKCC1a and NKCC1b) [50, 
51] and furosemide, in particular, effectively inhibits KCC1, KCC2, KCC3 and KCC4 [52-56], 
although at lower concentrations than those required to inhibit NKCCs [57-62]. Importantly, 
while NCC and NKCC2 have a wider tissue expression pattern than originally thought [63, 
64], they are typically found at much lower levels compared to those in the kidneys [65-
73]. Therefore, their pharmacological and physiopathological relevance is often perceived 
irrelevant, and consequently, the physiological and pharmacological roles of extra-renal NCC 
and NKCC2 remain understudied.

In addition to their pharmacological profile, the ion carrier function of diuretic-sensitive 
symporters is, in turn, fine-tuned by phosphorylation of key residues in SLC12A proteins, 
mostly driven by the OSR1/SPAK (Oxidative Stress Responsive 1/Ste20-related proline/
alanine-rich kinase) and WNK (With-No-Lysine kinases, WNK1-4) signaling cascades [74]. 
These kinases are widely expressed and play a role in multiple physiopathological processes. 
They are also exquisitely sensitive to fluctuations in intracellular K+ and Cl– concentrations 
[74, 75], and to inflammatory mediators [76-80]. These processes can, in turn, influence the 
expression level, pattern or function of diuretic-sensitive symporters. For instance, SPAK/
OSR1-mediated activation of NKCC1 aggravated inflammatory responses after injury [81, 
82], whereas NKCC1 inhibition reduced intracellular NFκB phosphorylation [83, 84] and 
activated local inflammatory cells [81, 85]. In microglia and macrophages, elimination of 
NKCC1 correlated with increased inflammasome priming, local production of IL1β [86] and 
efferocytosis [87]. This is relevant, as IL1β production requires assembly and activation 
of inflammasomes [88]. In addition, this and other interleukins/cytokines such as IL6 and 
TNFα play important roles in the inflammatory responses by activating NFκB-dependent 
pathways [89].

Inflammatory mediators, including nerve growth factor (NGF), bradykinin, prostanoids 
(e.g., prostaglandin E2), and ATP released from injured cells, along with cytokines like IL1β, 
IL6, TNFα, and interferon γ (IFNγ), as well as reactive oxygen species, can significantly 
modulate the expression and function of various Cl– transporters and channels. These 
mediators influence cellular processes by altering ion flux and transporter activity, as 
suggested by studies on different cellular environments [90-93]. One example is NKCC1, 
whose expression and function are particularly sensitive to inflammatory mediators. Indeed, 
NKCC1 modulation has been observed in a wide range of cell types, including sensory neurons 
[94-97], where inflammation affects pain signaling and sensitivity [98]. Additionally, this 
cotransporter plays a critical role in non-neuronal cells, such as colonocytes and intestinal 
cells [95, 99-103], where it contributes to gut inflammatory conditions [104]. Beyond these 
roles, NKCC1 activity is modulated by inflammatory mediators in synoviocytes, the cells 
that line the joints, contributing to inflammatory joint diseases like rheumatoid arthritis 
[105]. It also impacts microglia [83, 106], the immune cells of the brain, linking NKCC1 to 
neuroinflammatory processes [98]. Other affected cell types include endothelial cells [107], 
which regulate blood vessel function during inflammation and choroid plexus epithelial cells 
[76, 108], which play a key role in cerebrospinal fluid production and brain homeostasis. 
Overall, the widespread impact of NKCC1 modulation by inflammatory mediators across 
these diverse cell types underscores its importance in both neural and systemic inflammatory 
responses.
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Reactive oxygen species have also been reported to modulate thiazide- and loop 
diuretic-sensitive transporters. For instance, H2O2 [95, 100], superoxide [109], nitric oxide 
(NO) and NO-related species [110] can modulate NKCC1 and NKCC2 expression and function 
[111-115] as well as that of NCC [79]. NO also inhibited Cl– transport in renal tubular cells 
by mechanisms likely related, at least in part, to NKCC2 [79, 112, 116, 117], and regulated 
expression levels of KCC1, KCC3 and KCC4 in primary rat vascular smooth muscle cells in 
a protein kinase G-dependent manner [118-121]. Therefore, sulfonamide diuretics may 
have clinically significant effects beyond diuresis i.e., by modulating both the transport 
and/or non-transport functions of their known targets expressed outside tubular cells, as 
well as that of different targets unrelated to the SLC12A family. In turn, SLC12A members 
can respond to various inflammatory stimuli. This response can be characterized either 
by increased or decreased expression and/or function, thereby impacting the local effect 
of sulfonamide diuretics as well as cell volume, ion composition and osmolality in a wide 
range of cells and pathophysiological conditions. Although, the reverse relationship i.e., the 
role that SLC12A family members may play in modulating local or systemic inflammatory 
responses remains a gap in our knowledge, several reports have recently suggested a 
potential direct causal relationship between NKCC1, NCC, high Na+ and hyperosmolality in a 
variety of inflammatory responses [122-125] mediated by local cells, T cells or macrophages 
[71, 87, 126-132]. Therefore, it is plausible that osmotically sensitive SLC12A members may 
play a direct role in the modulation of local and systemic inflammatory processes.

In this review, we will examine the current evidence linking the use of sulfonamide 
diuretics to anti-inflammatory and/or pro-inflammatory responses in diverse clinical 
settings. Additionally, we will explore potential mechanisms involving SLC12A members in 
regulating these responses, particularly in the context of chronic inflammatory processes 
associated with hypertension and MetS.

Anti/inflammatory responses to sulfonamide diuretics: the evidence

Thiazides

The potential anti-inflammatory effects of thiazide diuretics (or any medication 
with anti-hypertensive effect) are closely intertwined with their well-established anti-
hypertensive properties, making it challenging to distinguish between the two. Hypertension 
is strongly linked to chronic inflammatory processes [133] and often coexists with obesity, 
insulin resistance, dysglycemia and dyslipidemia i.e., the components of MetS [134-137]. 
These conditions are in turn associated with increased tissue inflammation [12, 138] and 
elevated levels of inflammatory markers, including TNFα, C-reactive protein (CRP), IL1β, 
IL6, and IL8 [139]. As a result, it has been suggested that hydrochlorothiazide treatment 
may modulate inflammatory responses in hypertensive individuals [140], particularly those 
with components of MetS [141] or T2D [142]. However, while hydrochlorothiazide reduces 
hypertension, its chronic use may also exacerbate insulin resistance, glucose intolerance, 
ectopic fat deposition and dyslipidemia [143]. These undesired “side effects” could contribute 
to the progression of inflammatory-related metabolic abnormalities and increase the risk of 
developing T2D. Thus, while thiazides may effectively normalize hypertension, the benefits 
of lowering blood pressure might be counterbalanced, to some extent, by negative effects 
on metabolic health and inflammation irrespective of a potentially direct anti-inflammatory 
effect of the drug.

Chronic inflammatory processes are typically assessed by measuring one or few 
biomarkers including the classic acute-phase reactants [e.g., CRP and serum amyloid A (SAA)], 
cytokine production (e.g., TNFα, IFNγ, IL1β, IL6, IL8, IL10 and IL12 and their receptors), 
altered macrophage function and several biomarkers of vascular dysfunction [12, 144-148]. 
Notably, a comparative trial of hydrochlorothiazide and other anti-hypertensive medications 
resulted in no detectable CRP changes in patients with T2D [142], in hypertensive patients 
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with inflammation [149], or in patients with mild/moderate hypertension [150]. In addition, 
short-term use of hydrochlorothiazide was not associated with anti-inflammatory benefits 
in newly diagnosed hypertensive patients [141]. Therefore, normalizing blood pressure 
with hydrochlorothiazide alone may have limited anti-inflammatory effects, as reflected in 
markers of low-grade inflammation such as SAA, CRP [136, 151, 152], or arterial stiffness 
[153]. Nevertheless, when used alone or in combination with other antihypertensive 
medications, some trials did report a general anti-inflammatory effect, suggested by 
reductions in CRP levels, but not in other biomarkers of inflammation, in hypertensive 
patients with MetS, either with [142] or without T2D [140, 154, 155]. Hence, the perceived 
extent of hydrochlorothiazide’s anti-inflammatory actions in the clinical setting remains 
uncertain as it appears to depend on the specific inflammatory markers being examined, 
background inflammation and the metabolic status of the individuals being tested.

Thiazide-like diuretics

Unlike hydrochlorothiazide, thiazide-like drugs such as chlorthalidone and indapamide 
have not been clearly associated (yet) with worsened metabolic parameters or an increased 
risk of T2D in the management of hypertension [143]. On the contrary, these drugs, either 
used alone or in combination with other treatments, have revealed an overall beneficial anti-
inflammatory effect, including reductions in CRP levels among patients with refractory [156] 
or mild hypertension [140]. This has been supported by studies showing improvements in 
various markers of oxidative and inflammatory tissue damage in hypertensive rats, with 
or without T2D [157-160]. Consequently, normalizing blood pressure with these diuretics 
may reduce inflammation and oxidative stress independently of the metabolic status or 
background inflammation. However, it should be noted that chlorthalidone has also been 
linked to elevated plasma CRP levels and impaired endothelial function in poorly controlled 
hypertensive patients with heart failure [161]. Therefore, despite the apparently positive 
overall anti-inflammatory effects, there may be specific physiopathological circumstances in 
which these drugs could contribute to negative inflammatory outcomes.

Loop-diuretics: Furosemide and Bumetanide

There are clinical studies that have indirectly examined the anti-inflammatory effects of 
these diuretics in humans with chronic inflammatory conditions. For instance, inflammatory 
bronchoconstriction associated with asthma was shown to be alleviated by inhaled 
furosemide in multiple clinical trials by mechanisms assumed to be locally anti-inflammatory 
[162-173]. In the case of bumetanide, the evidence suggesting a potential anti-inflammatory 
action comparable to that attributed for furosemide in humans or in preclinical models is 
scarce. However, bumetanide did reduce the inflammatory and phagocytic responses of 
human macrophage cell lines in response to lipopolysaccharide (LPS) in vitro and inhaled 
nebulized bumetanide rapidly attenuated LPS-induced acute tissue inflammation and lung 
injury in mice [174, 175]. Importantly, systemic bumetanide or inhibition of WNKs also 
delayed macrophage-mediated inflammatory resolution of LPS-induced lung injury in mice 
[87], suggesting that the diuretic may have the potential to promote or sustain chronic local 
inflammatory responses, despite its initial acute anti-inflammatory effects.

Anti/inflammatory responses to diuretics: the mechanisms

Hydrochlorothiazide and thiazide-like diuretics

Contrary to the general perception, the anti-hypertensive effects of these two classes 
of diuretics are far more complex than commonly assumed, involving multiple mechanisms 
that remain largely mysterious and surprisingly unrelated to their well-known renal targets 
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or diuretic action [176, 177]. Far less known are the molecular pathways by which thiazides 
and thiazide-like diuretics might directly influence inflammatory responses in hypertensive 
patients. In this regard, it has been proposed that, in most circumstances (see [161]), 
these diuretics may improve endothelial function and reduce local levels of inflammatory 
markers independent of the effect of blood pressure [178]. Conversely, better control of 
blood pressure and subsequent reduction in cardiovascular risk could counteract some 
background inflammatory processes in hypertensive individuals with MetS, T2D or other 
underlying low-grade chronic inflammatory conditions. Similarly, while hydrochlorothiazide 
can protect the kidneys by lowering blood pressure, it can also cause general electrolyte 
imbalances and hyperuricemia [179], or even local renal damage that might lead to local or 
disseminated inflammatory responses.

In fact, high, likely toxic concentrations of hydrochlorothiazide have been linked to renal 
tubular apoptosis, peritubular inflammation and renal interstitial macrophage recruitment 
in preclinical models [180, 181]. Moreover, similar to the chronic effect that bumetanide 
has on the distribution of NKCC1 in cultured cells [182], or that of furosemide on tubular 
NKCC2 [183], treatment with thiazides resulted in the formation of autophagosomes and 
redistribution of NCC from the apical plasma membrane to all over the tubular cells [181] 
likely precluding expected pharmacological responses. In turn, renal tubular cells, along with 
macrophages [88] can release IL1β in response to high glucose levels to promote and sustain 
local inflammation in the kidneys of obese and diabetic animal models [184] thus adding an 
extra layer of complexity to the inflammatory response. Lower doses of hydrochlorothiazide, 
however, have demonstrated an apparent beneficial anti-inflammatory effect in the kidneys 
of aldosterone-induced hypertensive rats [185]. Additionally, these lower doses have been 
shown to prevent T-cell accumulation in the kidneys and aortas of humanized mouse models 
of hypertension [186] and to reduce T-cell infiltration, local inflammation and arterial 
stiffening in the aortas of angiotensin-II-induced hypertensive mice [187]. Therefore, while 
high doses of hydrochlorothiazide may contribute to renal inflammation and tissue damage, 
lower doses may exert protective anti-inflammatory effects in hypertensive animal models 
without T2D or MetS, highlighting a contextual and potential dose-dependent impact of 
these class of diuretics on renal inflammation.

Along these lines, thiazides were also shown to reduce renal macrophage infiltration 
and slow renal disease progression [188]. However, hydrochlorothiazide did not affect 
local in vivo or in vitro levels of TNFα [189, 190] or IL1β production from neutrophils 
[191]. Instead, the diuretic inhibited T-cell accumulation in tissues, particularly in the 
thoracic lymph nodes, aorta and kidneys, in both animal models and hypertensive 
patients [186, 192]. Although hydrochlorothiazide (and chlorthalidone) lowered blood 
pressure, left ventricular hypertrophy and proteinuria, they did not impact reactive oxygen 
intermediates or the expression/release of chemo-attractants in blood vessels [193]. 
Similarly, bendroflumethiazide treatment had no effect on renal TNFα, IL6 and TGFβ1 levels 
in mice [194]. Notably, hydrochlorothiazide reduced IL17A, which is involved in small artery 
remodeling and associated to hypertension in mice [195]. Additionally, indapamide reduced 
oxidative stress and inflammation in the renal cortex by decreasing NFκB activation and 
TGFβ1 expression [196]. At any rate, it remains challenging to determine whether these 
effects are primarily due to the blood pressure-lowering properties of these diuretics or a 
direct influence on local cells, such as T-cells and the release of their associated cytokines, 
which are known contributors to local inflammation [197-199].

Interestingly, the finding that macrophages, vascular smooth muscle cells and endothelial 
cells express a thiazide-sensitive NCC [71] suggests a potential site for hydrochlorothiazide 
to directly modulate local inflammatory responses under physiopathological conditions. 
Supporting this, NCC expression in these cells is upregulated in response to pro-inflammatory 
cytokines such as TNFα, IL1β and IL18. Along these lines, it has been shown that IL18 and 
IL1β production by NCC-expressing tubular epithelial cells contribute to hypertension, renal 
inflammation, fibrosis and macrophage recruitment in hypertensive and diabetic animal 
models [184, 200]. Moreover, macrophage and/or tubular NCC may act as a receptor for 
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IL18, potentially contributing to the modulation of local inflammatory responses [71]. 
Therefore, while the hypotensive effects of hydrochlorothiazide may play a role in reducing 
inflammation, there is growing evidence that this diuretic may also have direct effects on 
vascular and inflammatory cells, particularly through NCC modulation, which could influence 
local inflammation independently of its blood pressure-lowering action [201].

In addition, by lowering blood pressure, hydrochlorothiazide may indirectly reduce 
the stress on blood vessel walls, potentially mitigating vascular inflammation over time, 
while exerting direct effects in vascular cells and local inflammatory cells [71, 202]. These 
vasodilatory and local anti/inflammatory actions of hydrochlorothiazide may be mediated by 
mechanisms that have historically been overlooked. These include actions through carbonic 
anhydrases [48, 203, 204], large-conductance K+ channels [205, 206], Ca2+-activated K+ 
channels [207-209], K+ channels [210] and other uncharacterized mechanisms, some of 
them potentially related to NCC [211]. Specifically, there are at least sixteen known variants 
of carbonic anhydrases, which are widely expressed, sensitive to sulfonamide diuretics and 
involved in various inflammatory processes [212-219]. Therefore, it is plausible that some 
of the anti/inflammatory effects of hydrochlorothiazide are mediated by these enzymes 
and ion channels. Clearly, this concept could be extended to thiazide-like drugs and other 
sulfonamide diuretics as well, thus suggesting a broader mechanism of action for this class 
of drugs [196, 220-223].

Furosemide and bumetanide

The mechanisms by which aerosolized furosemide exerts acute anti-inflammatory 
effects in vivo [163-172] are not well understood. Some studies have shown that inhaled 
furosemide reduces local levels of pro-inflammatory cytokines, such as IL6, IL8 and TNFα, in 
both patients and animal models with respiratory and inflammatory conditions [167, 224-
226]. This suggests that furosemide may have direct or indirect anti-inflammatory properties. 
Along these lines, furosemide has been proposed to reduce contact hypersensitivity and 
modulate immune responses mediated by rodent macrophages and B-cells ex vivo [227, 
228]. However, these effects could be partially attributed to the secondary normalization of 
blood pressure, as other non-diuretic antihypertensive drugs have also been shown to reduce 
macrophage activation in animal models of hypertension [229, 230]. Nevertheless, consistent 
with the observation that high concentrations of furosemide can suppress macrophage 
activation [174, 231] and inhibit migration of primary neutrophils in vitro [232], the diuretic 
has been reported to reduce LPS-induced pro-inflammatory cytokines, such as IL6 and TNFα 
in macrophage-like cell lines leading to general anti-inflammatory phenotypic changes in 
these cells [233]. In addition, high concentrations of furosemide reduced LPS-stimulated 
production of TNFα, IL6 and IL8 from blood mononuclear cells to levels comparable to that 
found with equimolar concentrations of hydrocortisone [234, 235]. However, it is important 
to mention that low concentrations of sulfonamides, including furosemide, failed to modulate 
cytokine production from macrophage-like cell lines in response to LPS, at least in the short 
term [236].

Together, these data lend support to the hypothesis that NKCCs (and/or KCCs) are 
involved, at least in part, in the modulation of the anti-inflammatory responses attributed 
to loop diuretics [237]. Specifically, the loss of NKCC1 has been shown to protect mice from 
acute lung inflammation, edema and injury caused by bacterial infections. This protection 
appears to result from impaired function of alveolar, lung epithelial, or endothelial cells, 
rather than from an effect on local inflammatory cells of hematopoietic origin [175, 238]. 
In addition, the inhibition of NKCCs using relatively low concentrations of bumetanide has 
been found to reduce acute lung inflammation in ex vivo experiments, possibly through the 
suppression of epithelial NFκB-dependent local production of TNFα [239]. However, in the 
longer term, systemic administration of bumetanide to mice after LPS-induced lung injury, 
at a time when inflammation is typically expected to have resolved, led to increased levels of 
IL1β, IL1α, IL6 and TNFα in bronchoalveolar fluid, by mechanisms associated with impaired 
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WNK1-OSR1/SPAK-NKCC1 signaling, which control phagocyte function and the local anti-
inflammatory response [87], thus suggesting that the diuretic may actually prolong the 
inflammatory state.

Interestingly, TNFα is known to increase the expression of OSR/SPAK, a substrate 
of WNK kinases and a major regulator of NKCCs and KCCs [74], in an NFκB-dependent 
manner [240]. Moreover, NKCC1 deficiency leads to increased efferocytosis i.e., the process 
whereby apoptotic cells are cleared by phagocytes, whereas that of KCC1 reduces it [87]; and 
efferocytosis increase the expression of multiple genes including NKCC1, KCC1 and some of 
their upstream kinases [241]. Further, activation of NFκB promotes osmotic stress and cell 
swelling [242], which then activates WNK kinases [74]. Furthermore, the WNK-OSR/SPAK-
NKCCs signaling pathway has been shown to play a crucial role in alveolar fluid clearance, 
mitigating inflammatory lung injury and edema in animal models [243]. Along these lines, 
the WNK4-OSR/SPAK-NKCC1 pathway was recently shown to modulate primary macrophage 
activation and reduce LPS-induced lung inflammation and injury in mice [81]. Therefore, 
collectively these findings suggest that bumetanide- and furosemide-sensitive NKCCs and 
KCCs modulate local inflammatory responses through a complex regulatory network involving 
osmotically- and K+/Cl–-sensitive WNKs, NFκB-driven cytokine production, macrophage 
activation and neutrophil migration. Importantly, monocytes and T cells also express NKCC1 
and other transporters of the SLC12A family [241, 244-248], whereas NKCC1, KCC3 (as well 
as Cl–) have been implicated in neutrophil phagocytic activation [249-252]. Therefore, these 
data imply that loop-diuretics may play a direct role in the immunoinflammatory processes 
mediated by phagocytes at multiple levels.

Emerging inflammatory mechanisms: old concepts meet new ones

Several members of the SLC12A family of Cl– loaders and extruders directly participate 
in the regulation of the intracellular Cl– concentration ([Cl–]i), which in most cells is kept 
above thermodynamic equilibrium making possible its electrogenic exit via Cl– channels 
[253]. In fact, Cl− ions are now recognized to play a significant role in cellular signaling, acting 
as an effector or even a second messenger in widely diverse biological processes (reviewed 
in [254]). Indeed, beyond its known influence on cell volume regulation, Cl– ions impact the 
membrane potential and hormone secretion [255] as well as the balance of reactive oxygen 
species and the pH levels both inside and outside of the cell [256]. In addition, Cl– plays 
a pivotal role in modulating the function of several key organelles, including endosomes, 
phagosomes and lysosomes [257, 258]. Further, fluctuations in [Cl–]i have been associated 
with a wide array of cellular functions including: i) regulation of gene expression [259, 
260], such as that of IL1β [261]; ii) protein synthesis and/or function, including that of 
the transcription factor RUNX1 [262, 263], myeloperoxidase [264], the transient receptor 
potential melastatin 7 (TRPM7) [265] or the mechanistic target of rapamycin, complexes 
1 and 2 (mTORC1-C2) [266]; iii) post-translational modifications, including that of WNK1, 
WNK4 and OSR/SPAK [75, 267, 268]; and iv) cell cycle progression, proliferation and 
differentiation [259, 266, 269, 270]. Importantly, inflammatory responses are initiated by 
local macrophages and relayed to other innate immune cells, requiring the coordinated 
activity of multiple mechanisms, including those previously mentioned [269, 271-274]. 
Given this complexity, it is not surprising that the SLC12A family of Cl– symporters may play 
a direct role in modulating local inflammatory responses.

 In fact, recent evidence suggests that both Cl– and K+ contribute to the regulation of 
inflammasomes (reviewed in [275]) i.e., multi-protein complexes that act as sensors or 
receptors within the innate immune system [276-280]. Inflammasomes are crucial in 
various inflammatory conditions, including MetS and T2D [281-283]. A key function of 
inflammasomes is the activation of caspase-1, an enzyme that cleaves pro-inflammatory 
cytokines, such as IL1β and IL18, into their active forms. This activation triggers 
inflammatory responses aimed to combat infections and respond to host-derived damaged 
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or misfolded proteins (i.e., irritatio). This response often leads to a form of inflammatory 
cell death known as pyroptosis, which serves to perpetuate inflammation until phagocytes 
can remove the irritants through efferocytosis [284-286]. Interestingly, activation of NKCC1 
via K+/Cl–-sensitive WNK-OSR1/SPAK signaling has been shown to delay the resolution of 
inflammation driven by the innate immune response [287]. This delay impairs the normal 
function of innate immune cells (i.e., functio laesa) which further contributes to prolonged 
inflammation.

Conclusion

Current evidence, although still limited, may suggest that members of the SLC12A 
family of Cl– loaders and extruders may play direct and/or indirect roles in inflammatory 
processes by regulating local cell volume and ion homeostasis, which in turn is important 
for the functional regulation of inflammatory cells. This regulation also affects local cellular 
functions and responses including cytokine production, immune cell activation and 
phagocytic function. Specifically, NKCC1 and NCC have been linked to inflammation through 
their involvement in promoting local pro-inflammatory responses in endothelial cells and in 
cells of the innate immunity in different tissues. Therefore, under different physiopathological 
circumstances, pharmacological modulation of these cotransporters may help either mitigate 
inflammation, promote or sustain it, highlighting their potential role in modulating immune 
and inflammatory processes. Nevertheless, in the context of hypertension, MetS and T2D, 
untangling the potential anti- or pro-inflammatory effects of thiazide, thiazide-like and loop 
diuretics remains inherently complicated by the intricate relationships that exist between 
blood pressure, obesity, glucose intolerance, insulin resistance and chronic low-grade 
tissue inflammation. At the cellular and molecular levels, expanding our understanding 
of Cl– ion signaling is essential for unraveling the molecular and metabolic alterations 
observed in inflammatory conditions where Cl– transport is disrupted, as well as for better 
comprehending normal physiological responses such as inflammation.
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