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Abstract
Background/Aims:  Over the years, the number of patients with neurodegenerative 
diseases is constantly rising illustrating the need for new neuroprotective drugs. A promising 
treatment approach is the reduction of excitotoxicity induced by rising (S)-glutamate levels 
and subsequent NMDA receptor overactivation. To facilitate the search for new NMDA 
receptor inhibitors neuronal cell models are needed. In this study, we evaluated the suitability 
of human SK-N-SH cells to serve as a cell model for neurodegeneration induced by NMDA 
receptor overstimulation. Materials: The cytoprotective effect of the unselective NMDA 
receptor blocker ketamine as well as the GluN2B-selective inhibitor WMS14-10 was evaluated 
utilizing different cell viability assays, such as endpoint (LDH, CCK-8, DAPI/FACS) and time 
dependent methods (bioimpedance). Results: Non-differentiated as well as differentiated SK-
N-SH cells express GluN1 and GluN2B subunits. Furthermore, 50 mM (S)-glutamate led to 
an instantaneous decrease in cell survival. Only application of unselective channel blocker 
ketamine could protect differentiated cells against this effect, while the selective inhibitor 
WMS14-10 did not significantly increase cell survival. Conclusion: SK-N-SH cells show an 
increased sensitivity to (S)-glutamate mediated cytotoxicity with higher differentiation level, 
that is only partially induced by NMDA receptor overstimulation. Furthermore, we showed 
that only unselective NMDA receptor inhibition can partially reverse (S)-glutamate-induced 
toxicity.
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Introduction

Neurodegeneration is a common mechanism in Alzheimer’s (AD), Huntington’s or 
Parkinsons disease, which have an increasing prevalence as life expectancy rises [1–3]. One 
pathway of neurodegeneration is the process of excitotoxicity that is induced by uncontrolled 
release of (S)-glutamate from degenerated cells [4–7]. As a consequence, high concentrations 
of (S)-glutamate lead to overstimulation of glutamatergic receptors including the Ca2+ 
conducting N-methyl-D-aspartate (NMDA) receptors creating a self-enhancing apoptosis 
process due to Ca2+ overload [5, 8–10]. NMDA receptors are heterotetrameric ion channels, 
which are formed by two mandatory GluN1 subunits and different combinations of two 
GluN2 (GluN2A-D) and / or GluN3 (GluN3A-B) subunits [11, 12]. The composition of NMDA 
receptors strongly influences the ion channel function [13]. Depending on the neuronal 
tissue, the NMDA receptor subunits have different expression levels leading to a finetuning 
of NMDA receptor properties and contribution to different physiological processes like 
learning and cognitive function [14, 15]. Inhibition of NMDA receptor overstimulation by the 
open channel blocker memantine displays an important strategy for pharmacotherapy of 
moderate and severe AD that is characterized by pronounced loss of neuronal cells inducing 
excitotoxicity [16]. Since memantine is characterized as a weak and unselective open channel 
blocker its effectiveness is limited [16]. On the other hand, usage of more potent unselective 
channel blockers like ketamine is hampered by the severity of possible side effects [17]. 
Interestingly, several studies suggest that especially overstimulation of GluN2B containing 
NMDA receptors correlates with the observed neurodegeneration in AD or Huntington’s 
disease [6]. Thus, highly potent and GluN2B selective inhibitors might be promising drug 
candidates for better disease control and reduced side effects. The prototype of GluN2B 
specific NMDA receptor inhibitors is ifenprodil, which is used as a cerebral vasodilator due 
to its inhibitory effects on adrenergic receptors [18]. Structure reorganization of ifenprodil 
led to the development of WMS14-10 that shows increased potency at GluN2B containing 
NMDA receptors and an optimized selectivity profile towards adrenergic, serotonergic and 
sigma receptors in several different assays [19, 20]. To evaluate the capability of WMS14-
10 to protect cells from excitotoxicity, a human neuronal cell model is needed to simulate 
excitotoxic conditions.

For this purpose, we used NMDA receptor expressing human SK-N-SH cells that 
were previously characterized as a cell model for neurodegenerative diseases like AD or 
Parkinson [21, 22]. SK-N-SH cells were isolated from bone marrow of a 4-year-old girl and 
exhibit characteristics of two neural progenitor cell types, a neuroblast type (N-type) and 
a substrate-adherent fibroblast-like or epithelial type (S-type) [23, 24]. It has been shown 
that upon all trans retinoic acid exposure, cell mitosis arrested and differentiation into a 
more neuronal phenotype takes place [25]. While NMDA receptors are also expressed on 
the progenitor cells, their expression level can be increased by neuronal differentiation [26]. 
Independently from the differentiation stage, the progenitor as well as the differentiated 
cells are sensitive to (S)-glutamate [26, 27]. However, NMDA-mediated cell death has only 
been assumed for the differentiated cell type [26].

In this project, we investigated the cell protective effect of the potent but unselective 
NMDA channel blocker ketamine as well as the GluN2B selective NMDA receptor 
inhibitor WMS14-10 against (S)-glutamate induced toxicity at the non-differentiated and 
differentiated SK-N-SH cells. Reverse transcriptase-PCR (RT-PCR) and immunostaining were 
performed for expression analysis of NMDA receptor subunits. Cell viability was analyzed 
in presence of (S)-glutamate and the NMDA receptor inhibitors by L-lactate dehydrogenase 
(LDH) and cell counting kit 8 (CCK8) assays as well as 4′,6-diamidino-2-phenylindole (DAPI) 
staining and subsequent flow cytometry. The results indicate that only a small fraction of 
(S)-glutamate induced toxicity is caused by NMDA receptor activation. Moreover, partial cell 
protection could only be achieved by unselective NMDA receptor inhibition, while GluN2B 
selective inhibition showed no effect. Our results indicate that neither non-differentiated nor 
differentiated SK-N-SH cells are a suitable cell model for the investigation of cell protective 
NMDA receptor inhibition.
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Materials and Methods

TEVC measurements
Inhibitory activity of both compounds was evaluated via TEVC in Xenopus laevis oocytes (Ecocyte 

Bioscience, Dortmund, Germany) as previously described [19]. Harvesting of oocytes was carried out by 
Ecocyte Bioscience, which are certified by the Ministry of Nature, Environment and Consumer Protection 
NRW (Germany), in accordance with relevant guidelines and regulations. No further experiments with 
live vertebrates were performed. Oocytes were injected with 0.8 ng cRNA of GluN1-1a and 0.8 ng cRNA 
of GluN2B. The oocytes were incubated for 5 days in Barth`s solution, containing 88 mM NaCl, 1 mM KCl, 
0.4 mM CaCl2, 0.33 mM Ca(NO3)2, 0.6 mM MgSO4, 5 mM TRIS-HCl, 2.4 mM NaHCO3, supplemented with 80 mg 
/ L theophylline, 63 mg / L benzylpenicillin, 40 mg / L streptomycin, and 100 mg / L gentamycin at 18 °C. 
TEVC experiments were performed with Ba2+-Ringer solution (10 mM HEPES, 90 mM NaCl, 1 mM KCl, and 
1.5 mM BaCl2, adjusted to pH 7.4). Agonist solution containing 5 to 50 mM (S)-glutamate and 0.4 mM glycine 
was freshly prepared from stock solutions in Ba2+-Ringer for each experiment. Recording was performed at 
-70 mV and recording pipettes (0.5 – 1.5 MΩ) were backfilled with 3 M KCl. Both compounds were tested at 
5 - 10 independent oocytes from three different batches.

Cell culture
SK-N-SH cells (Merck, Darmstadt, Germany) were grown in Dulbecco’s modified Eagle’s medium 

(DMEM) high glucose (Merck, Darmstadt, Germany) supplemented with 10 % FBS, 1x penicillin/
streptomycin/glutamine (PSG) and 1x sodium pyruvate at 37 °C and 5 % CO2. The medium was changed 
every 3 days and 80 - 90 % confluent monolayers were passaged by 0.25 % Trypsin-EDTA (Merck). Cells 
were incubated for 3 min with Trypsin-EDTA, neutralized with medium and centrifuged for 3 min at 300 
rpm.

Differentiation by RA
All-trans retinoic acid (RA) was dissolved in DMSO (10 mM). For differentiation, cells were plated into 

poly-L-ornithine-coated (0.01 %, Merck) wells at a density of 4.5 x 104 cells / cm2 and incubated for 24 h 
in the previously described media. To increase the sensitivity, cell number was increased to 3 x 105 cells / 
cm2 for intracellular Ca2+ recordings. Subsequently, the medium was changed to the differentiation medium 
(DMEM + 2.5 % FBS + 1x PSG + 10 µM RA, according to literature [28]). Cells were incubated with RA for 14 
days with exchange of media every 48 h.

Reverse transcription and PCR
Total RNA was extracted using the NucleoSpin RNA Kit (Macherey-Nagel, Germany) according to the 

manufacturer’s instructions. Reverse transcription (RT) was performed using the High-Capacity cDNA 
Reverse Transcription kit (Thermo Fisher, USA) according to the procedure given by the manufacturer 
with 300 ng of total RNA used as template. PCR was performed in a Thermocycler (Eppendorf, Germany) 
using KOD hot start polymerase kit (Merck, Germany), 2 µL of cDNA from previous RT reaction and 0.6 
µM of specific primers for NMDA receptor subunits (Table 1) [29]. Thermocycling conditions were chosen 
following the manufactures protocol. PCR products were evaluated on a 2 % RedSafe-stained agarose gel.

Immunostaining
For microscopy and immunostaining, cells were seeded on glass coverslips (VWR), which were 

plasma-treated for 1 min at 50 kV and 
subsequently coated with 0.001 % poly-L-
ornithine in PBS for 60 min. The cells were 
then seeded onto the coverslip and incubated 
overnight in the media described above. First, 
the cells were washed twice with PBS and fixed 
with paraformaldehyde (4 % in PBS) for 30 min. 
Then, non-specific protein binding sites were 
saturated with 0.5 % bovine serum albumin in 

Table 1. Primer sequences

5’ 3’
5’ 3’
5’ 3’
5’ 3’
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PBS for 60 min. Subsequently, primary antibodies (Table 
2, 1:400 in 0.5% BSA/PBS) were added to the fixed cells 
and incubated overnight at 4 °C. On the following day, 
primary antibody solution was removed and cells were 
washed three times with PBS. Secondary antibodies (anti-
Mouse HRP, GE Healthcare #NA931V, 1:800 in 0.5 % BSA/ 
PBS) and anti-Rabbit Alexa Fluor 488 (Sigma Aldrich 
#SAB4600036, 1:800 in 0.5 % BSA/ PBS) were added to 
the cells. Incubation was performed for 60 min under light exclusion at room temperature. After this, cells 
were washed again two times with PBS and one time with distilled water. In the first of the three washing 
steps, DAPI (Thermo Fisher #62247) 1:4000 was added to the PBS. The coverslip was then mounted on a 
slide using AquaPolymount (Polyscience) and was left hardening overnight. Coverslips were imaged using 
a confocal microscope (Leica DMI 4000 B) at a magnification of 63× (water immersion). Fluorescence 
intensity was analyzed using ImageJ 1.53t (NIH, USA) for every cell (n = 10-23) in every condition.

Cell-counting Kit 8 for cell viability
Cell viability was evaluated using Cell-Counting Kit 8 (CCK-8) (Dojindo Laboratories, Japan) according 

to the manufacturers protocol. Cells were seeded into 96-well plates (1.5 x 104 cells / well) and incubated 
overnight at 37 °C and 5 % CO2. Media, containing different conditions, were changed afterwards. After 24 
h of incubation, 10 µL of CCK-8 were applied to each well, the number of viable cells was evaluated after 3 h 
incubation time at 450 nm using an Ao absorbance microplate reader (Azure Biosystems, USA).

Lactate dehydrogenase assay for cell toxicity
To determine the cell toxicity of different test solutions, the lactate dehydrogenase (LDH) assay was 

used. In order to eliminate background absorption caused by the phenol red dye contained in normal DMEM 
(absorption maximum at pH 7.5: 560 nm), colorless DMEM (Sigma) was used for all subsequent steps. In 
addition, the concentration of FBS was lowered from 10 % to 5 %, since FBS already contains LDH at low 
concentrations and leads to background absorption. Subsequently, 1x PSG and 1x sodium pyruvate were 
added. This medium will be referred to as medium LDH in the following. To perform the cytotoxicity test for 
different substances, cells were seeded in 96-well plate and were incubated with medium LDH overnight. 
Subsequently, the cells were incubated for 24 h with the substances to be tested. About 45 min before the 
end of incubation, an additional triplet with 10 µL of water to monitor spontaneous activity and a triplet 
with 10 µL of cell lysis buffer to monitor maximum LDH activity were mixed. Next, 50 µL of the supernatant 
were transferred to a new cell culture plate and 50 µL of the reaction mixture were added and incubated for 
30 min in the absence of light. After addition of the stop solution, the absorbance was measured at 492 nm 
and 680 nm for reference.

Annexin V/DAPI-staining and flow-cytometry
Annexin V/DAPI staining was used to analyze cell death via flow cytometry with a FACSAria III (BD 

Biosciences, USA). For FACS preparation, cells were incubated with the respective test substance for 24 h. 
After incubation, supernatant and detached cells were transferred to a falcon tube (15 mL). The cells were 
then centrifuged at 300 g for 3 min, resuspended in 500 µL of annexin V-binding buffer (140 mM NaCl, 
2.5 mM CaCl2, 10 mM HEPES, pH = 7.4) and stored on ice. 50 µL of this cell suspension were mixed with 
2.5 µL annexin V-AF568 and incubated for 10 min in the absence of light. Subsequently, 400 µL of annexin 
V-binding buffer containing DAPI at a ratio of 1:400 was added and incubated for 5 min. Cell suspension was 
then centrifuged at 300 g for 3 min, resuspended in 500 µL of annexin V-binding buffer and transferred to 
FACS tubes. 10, 000 events were recorded. Gating was set with the negative sample.

Bioelectrical impedance assay
To determine cell viability via bioelectrical impedance assay, the CardioExcyte96 (Nanion Technologies, 

Munich, Germany) was used. Methods and theoretical background were mentioned before [30–32]. Cells 
were seeded into 96-well plates (NSP-96 CardioExcyte96 Sensor Plates 2.0 mm, Nanion, Germany) (1.5x104 

cells/well) and incubated overnight in the CardioExcyte96. Media, containing different conditions, were 
changed afterwards and cells were incubated for 24 hours. Cell growth was normalized to the signal at the 
time of application.

Table 2. Primer antibodies
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Intracellular Ca2+ recordings via Fluo-4-AM-based fluorescent plate reader analysis
Fluorescence based recordings were done as previously described [33, 34]. Cells were incubated with 

the fluorescent calcium indicator Fluo-4-AM at final concentration of 5 µM in the presence of Pluronic F127 
(0.005 % w / v) and probenecid (3 mM) in Mg2+-free Krebs-Ringer solution (KRS, 121.0 mM NaCl, 2.5 mM 
KCl, 2.5 mM CaCl2, 1.0 mM NaH2PO4, 20.0 mM HEPES (pH 7.4), and 11.0 mM D-Glucose) for 60 min at 37°C. 
Subsequently the solution was changed to 150 µL of Mg2+-free KRS with 3 mM probenecid to prevent Fluo-
4 leakage. Fluorescence was evaluated in a fluorescence plate reader (FLUOstar Omega, BMG Labtech, 
Germany) at 30 °C with an excitation wavelength of 480 nm and an emission wavelength of 520 nm with 
bottom optics. Fluorescence was recorded before and after application of 16.6 µL (1:10 dilution) of buffer, 
100 mM KCl as a control or 50 mM (S)-glutamate [35, 36]. Changes in fluorescence are shown as ∆F/F0 (%), 
with ∆F as change of the fluorescence relative to the mean basal fluorescence (F0) before application of 
ligands, normalized to the maximum peak of ionomycin as control.

Statistical analysis and reproducibility
All values are given as mean ± SEM. Numbers of independent oocytes, analyzed cells or experiments 

are given in the main article, the figure legends or supplementary information with at least 3 independent 
replicates. Wherever applicable, data were statistical evaluated by one-way-ANOVA followed by post hoc 
mean comparison Tukey test or two-sited T-test using OriginPro 2024. P values are indicated by ns (not 
significant) for p > 0.05, * for p < 0.05, ** for p < 0.01 and *** for p < 0.001.

Results

(Non-)differentiated SK-N-SH cells express NMDA receptors
The SK-N-SH cell line is characterized by two different cell subtypes, the substrate-

adherent type (S-type), recognizable by its flat and larger shape, and the neuronal type 
(N-type). The N-type has a distinctly different geometry, a thicker soma, as well as 
numerous neurite-like extensions [24]. The proportion of N-type cells can be increased by 
treatment with all-trans retinoic acid for 14 days [26]. Both conditions (non-differentiated / 
differentiated) were previously used for cellular disease modelling [37, 38].

Within 14 days of all-trans retinoic acid treatment an increase in the proportion of N-type 
cells as well as cell-cell connections between them can be observed (Fig. 1a, 1b). To verify the 
neuronal character of the N-type cells immunostaining against MAP2 (microtubule-associated 
protein 2) was conducted, which is typically expressed in dendritic structures of neuronal 
cells [39–41]. For SK-N-SH cells, MAP2 expression can be detected independently from the 
differentiation status (Fig. 1a, 1b). To utilize SK-N-SH cells as a cell model for NMDA receptor 
induced neurodegeneration, the cells do not only need neuronal properties but also high 
expression rates of functional NMDA receptors. Of particular interest are GluN2B containing 
NMDA receptors due to their functional association with neurodegenerative diseases [6]. 
Therefore, we performed whole-cell RNA isolation, reverse transcription followed by PCR to 
detect cDNA encoding for GluN1 and GluN2B subunits. The results indicate that mRNAs of 
both subunits are expressed independently from the maturation (Fig. 1c). In line with these 
results, co-immunostaining using GluN1 and GluN2B antibodies show that both receptor 
forming subunits are expressed at the plasma membrane (Fig. 1d, 1e). For differentiated cells 
expression of both subunits is also present at the cell-cell contacts (Fig. 1e). Interestingly, 
while fluorescence intensity for GluN1 subunit is not different for differentiated cells, 
fluorescence intensity of GluN2B subunit significantly rises in differentiated cells (SI Fig. 
1). To generate functional NMDA signaling, the plasma membrane located subunits need to 
colocalize. Therefore, we analyzed the fraction of colocalized subunits using the fluorescence 
signal generated from immunostaining of GluN1 and GluN2B (Fig. 1f-1h) by Pearson’s 
coefficient. For non-differentiated cells, GluN1 and GluN2B fluorescence colocalized for 87 ± 
2 % (n = 3), while the values for maturated cells were slightly reduced to 76 ± 4 % (n = 
3). In summary, neuronal-like cells with colocalized GluN1 and GluN2B expressions were 
identified under non-differentiated and differentiated conditions rendering the expression 
of functional NMDA receptors as plausible for both conditions.
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(S)-glutamate shows cytotoxic effects
Late-stage neurodegeneration in AD is caused by elevation of extracellular (S)-glutamate 

concentrations resulting from cell disruptions subsequently leading to NMDA receptor 
overstimulation and cellular Ca2+ overload [42, 43]. To simulate these cytotoxic conditions at 
non-differentiated and differentiated SK-N-SH cells, different concentrations of (S)-glutamate 
were added to the cell media (DMEM high glucose) that also contains the co-agonist glycine 
(400 µM), which is required for effective NMDA receptor stimulation. After 24 h incubation 
time, cell viability was assessed by three different assays: cell counting kit 8 (CCK8), lactate 
dehydrogenase (LDH) and 4′,6-diamidin-2-phenylindol (DAPI) staining assay. The CCK8 
assay uses a tetrazolium salt to detect overall dehydrogenase activity via colorimetric 
determination, while the LDH assay monitors the activity of lactate dehydrogenase that is 
released from non-viable cells. Additionally, ruptured cells were quantified by DAPI staining 
followed by fluorescence-activated cell sorting (FACS). The results summarized in Fig. 2a-2f 
and SI Figures 2-4 show that all assays detected significant reduction in cell viability under 
the influence of 50 mM (S)-glutamate for non-differentiated as well as for differentiated cells. 
Furthermore, reduced cell viability can also be observed under the influence of 25 mM (S)-
glutamate for non-differentiated cells in CCK8 as well as DAPI/FACS assay (Fig. 2a, 2e). For 
differentiated cells, significant reduction of cell viability in presence of 25 mM (S)-glutamate 
was only detected via the LDH assay (Fig. 2d). Lower concentrations of (S)-glutamate did 
not significantly reduce SK-N-SH cell viability. These results indicate that non-differentiated 
and differentiated cells are sensitive to high concentrations of (S)-glutamate. Since only 
50 mM (S)-glutamate led to a consistent and significant reduction in cell viability in all 
three assays, all further experiments were conducted using this concentration to simulate 
neurodegenerative conditions.

Ketamine and WMS14-10 inhibit NMDA receptors at high (S)-glutamate concentrations
To evaluate the neuroprotective effect of unselective as well as GluN2B selective NMDA 

receptor inhibition, ketamine and WMS14-10 were utilized. Previous recordings via Two-
electrode voltage clamp (TEVC) on GluN1/GluN2B expressing Xenopus laevis oocytes 

Fig. 1. Expression of NMDA receptor 
subunits. a, b Immunostaining of non-
differentiated (a) and differentiated 
(b) SK-N-SH cells using MAP2 antibody 
(red) and DAPI (blue) c Cropped gel 
of RT-PCR products from whole cell 
RNA isolation using GluN1 and GluN2B 
primer. Non-cropped gel is listed as 
SI Figure 6 in the Supplementary 
Information. d, e Immunostaining 
of non-differentiated (d) and 
differentiated (e) SK-N-SH cells using 
GluN1 (red), GluN2B (green) antibodies 
and DAPI (blue). f-h Immunostaining of 
differentiated SK-N-SH cells showing 
GluN1 in red (f), GluN2B in green (g) 
and colocalized subunits in white (h).
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determined an IC50 value of 0.85 ± 0.25 µM for ketamine (Fig. 3a) in presence of 100 µM 
glycine and 100 µM (S)-glutamate [44]. For the GluN2B selective NMDA inhibitor rac-
WMS14-10 (Fig. 3b), an IC50 value of 0.12 ± 0.01 µM at GluN1/GluN2B expressing oocytes 
was determined in presence of only 10 µM (S)-glutamate and 10 µM glycine, while no 
significant inhibition could be detected at GluN1/2A-, GluN1/2C- and GluN1/2D-containing 
NMDA receptors [19, 45]. Previous studies showed that some NMDA receptor modulators 
have an agonist-dependent activity that can be diminished or even abolished by high agonist 
concentrations [46–48]. To ensure that the inhibitory effect of ketamine as well as WMS14-
10 is not influenced by high (S)-glutamate concentrations, we evaluated the inhibitory 
activity of 100 µM ketamine and 10 µM WMS14-10 at GluN1/GluN2B expressing oocytes in 
presence of 5 – 50 mM (S)-glutamate and 400 µM glycine by TEVC (Fig. 3c-3f). The results 
show that both compounds were able to generate almost full receptor inhibition at all tested 
(S)-glutamate levels (Fig. 3e, 3f). For ketamine current inhibition ranged from 92 ± 4 to 97 ± 
8 % for the different (S)-glutamate levels, while WMS14-10 achieved inhibition values of 92 
± 7 to 99 ± 5 %. The mean values of inhibition for ketamine as well as WMS14-10 were not 
significantly different indicating no negative influence on the inhibitory effect by the used 
(S)-glutamate concentrations. Therefore, both compounds tender suitable to prevent NMDA 
receptor induced neurotoxicity at 50 mM (S)-glutamate in the SK-N-SH cell model.

Ketamine shows a reversing effect on differentiated SK-N-SH cells
Before the cytoprotective potential of both compounds was evaluated under 

neurodegenerative conditions, off target toxicity at the SK-N-SH cells induced by 100 µM 
ketamine or 10 µM WMS14-10 needed to be excluded. Therefore, both compounds were 
applied to non-differentiated and differentiated cells and incubated for 24 h without further 
stimulation of (S)-glutamate (Fig. 4a, 4b). For both compounds no significant reduction of 
cell viability was observed in CCK8, LDH as well as in DAPI/FACS assay. Next, we evaluated 
the cytoprotective potential of both compounds in presence of 50 mM (S)-glutamate for 24 
h (Fig. 4c, 4d). For non-differentiated cells, neither ketamine nor WMS14-10 were capable to 
significantly increase the cell viability in CCK8, LDH or DAPI/FACS assay compared to non-

Fig. 2. Cell viability of (non-)
differentiated SK-N-SH cells in 
presence of (S)-glutamate. Relative 
cell viability in presence of different 
(S)-glutamate concentrations was 
analyzed for non-differentiated (a, 
c, e) and differentiated SK-N-SH cells 
using CCK-8 (a, b), LDH (c, d) as well 
as DAPI/FACS (e, f) assays. Data were 
statistical evaluated by one-way-
ANOVA followed by post hoc mean 
comparison Tukey test. P-values are 
indicated by ns (not significant) for p 
> 0.05, * for p<0.05, ** for p<0.01 and 
*** for p<0.001
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protected cells (Fig. 4c). Surprisingly, WMS14-10 even significantly reduced cell viability 
in the CCK8 assay for non-differentiated cells. A similar tendency was also observed in the 
CCK8 results for WMS14-10 without (S)-glutamate, although reduction of cell viability was 
not significant (Fig. 4a). In contrast to non-differentiated cells, significant cell protection 
was detected for 100 µM ketamine in CCK8 as well as in LDH assay. For DAPI/FACS slightly 
improved cell viability was observed. However, results were not significantly different to 
the control. In contrast to ketamine, subunit specific inhibition via WMS14-10 showed no 
protective effects in CCK8, LDH or DAPI/FACS assays. Similar to non-differentiated cells, 
WMS14-10 showed a tendency to reduce cell viability in CCK8 assay although the effect was 
not significant. In summary, cytoprotective effects were obtained by application of 100 µM 
ketamine for differentiated cells, while subunit specific inhibition via WMS14-10 did not 
improve cell survival.

(S)-glutamate toxicity is immediately induced and not time-dependent
Previous cell viability experiments consistently show, that cytoprotective effects after 

24 h are only achieved for differentiated cells in presence of 100 µM ketamine. However, 
even with this high concentration of ketamine full cell protection was not achieved even 
though similar ketamine concentrations were used in other NMDA receptor cell models 
[49–51]. These observations raised the question if the observed cell toxicity induced 
by (S)-glutamate is caused progressively over the 24 h incubation period. Previously 
performed assays (CCK8, LDH, DAPI/FACS) are only qualified to quantify the cell viability 
at the incubation endpoint. In order to analyze the time dependent neurodegeneration, we 
repeated the neurodegenerative experiments utilizing a bioelectrical impedance assay (Fig. 
5). For this purpose, cells were plated on 96-well plates containing a reference and a sensing 
electrode (Fig. 5a). Without cells, current flow through the cell media is unimpeded (Fig. 5b), 
while cell growth leads to hindered current flow increasing the impedance (Fig. 5c). Under 
neurodegenerative conditions, detachment of cells causes impedance decrement that can 
be utilized to time-dependently quantify cell survival. Non-differentiated and differentiated 
SK-N-SH cells were seeded on 96 well plates with electrodes for impedance recordings and 
grown until maximum cell confluence indicated by constant impedance was reached (Fig. 5d, 
5e, time index -8 to 0 h). Afterwards, 50 mM (S)-glutamate together with 100 µM ketamine 

Fig. 3. Inhibitory activity at GluN1-
1a/GluN2B expressing Xenopus 
laevis oocytes. a, b Structures of 
ketamine (a) and WMS14-10 (b). 
c, d Representative current traces 
of GluN1-1a/GluN2B expressing 
oocyte activated by 50 mM (S)-
glutamate and 400 µM glycine 
(black bar), inhibited by 100 µM 
ketamine (c, blue bar) or 10 µM 
WMS14-10 (d, orange bar). e, f 
Inhibitory effect of 100 µM ketamine 
(e) and 10 µM WMS14-10 (f) in 
presence of different (S)-glutamate 
concentrations. Significance of 
mean differences was evaluated by 
one-way ANOVA in comparison to 
inhibitory effect in presence of 50 
mM (S)-glutamate and is indicated 
by ns for p > 0.05
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or 10 µM WMS14-10 were added to the media (Fig. 5d, 5e, time index 0 h). As a control, the 
effect of 50 mM (S)-glutamate without any NMDA inhibitor as well as the cell growth without 
any (S)-glutamate application was analyzed. The results summarized in Fig. 5d to 5g show 
that application of 50 mM (S)-glutamate results in an instant and significant (p < 0.001) 
reduction of attached cells independently from the differentiation status as well as from co-
application of NMDA receptor inhibitors ketamine and WMS14-10. Furthermore, application 
of (S)-glutamate almost abolished further cell growth within the observation time of 24 
hours which is indicated by nearly constant growth curves (Fig. 5d, 5e). In contrast, non-
differentiated and differentiated cells that were not exposed to (S)-glutamate show constant 
growth within the 24 h (Fig. 5d, 5e). Evaluation after 24 h illustrates that the most prominent 
reduction of cell growth for non-differentiated and differentiated cells can be detected under 
the influence of 50 mM (S)-glutamate without application of any NMDA receptor inhibitor 
(Fig. 5f, 5g). Co-application of neither 100 µM ketamine nor 10 µM WMS14-10 was able 
to significantly improve the cell survival. However, for differentiated cells, application of 
100 µM ketamine shows a tendency for cell protection by increasing the growth value from 
-50.6 ± 4.9 % (n = 10) for the unprotected condition to -36.6 ± 1.5 SEM (n = 8).

This observation is in line with the previous results and might indicate an increase 
of functional NMDA receptor expression for differentiated cells, which should result in an 
increased Ca2+ influx by (S)-glutamate application. To investigate this hypothesis in more 
detail, we performed intracellular Ca2+ recordings using the fluorescence calcium indicator 
Fluo-4-AM (SI Fig. 5). Application of 100 mM K+ as well as terminal application of ionomycin 
to each condition served as a positive control. Independently from the differentiation 
status, application of 50 mM (S)-glutamate failed to induce significantly increased Ca2+ 

Fig. 4. Evaluation of 
cytoprotection via 
application of NMDA 
receptor inhibitors. a, b 
Relative cell viability of 
non-differentiated (a) 
and differentiated (b) SK-
N-SH cells in presence of 
100 µM ketamine (blue) 
or 10 µM WMS14-10 
(magenta) without (S)-
glutamate stimulation. 
Untreated cells (gray) 
serve as a control. c, d 
Relative cell viability 
of non-differentiated 
(c) and differentiated 
(d) SK-N-SH cells in 
presence of 50 mM (S)-
glutamate without any 
NMDA receptor inhibitor 
(gray) as well as together 
with 100 µM ketamine 
(blue) or 10 µM WMS14-
10 (magenta). Data were 
statistical evaluated 
by one-way-ANOVA followed by post hoc mean comparison Tukey test. P-values are indicated by ns (not 
significant) for p > 0.05, * for p<0.05, and ** for p<0.01
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signals compared to non-treated cells even though a slightly increased fluorescence signal 
can be observed for differentiated cells (SI Fig. 5c, 5d). In summary, impedance as well as 
intracellular Ca2+ recordings indicate that (S)-glutamate induced toxicity is immediately 
occurring after application. Due to the almost unchanged toxicity under presence of NMDA 
receptor inhibitors and the low Ca2+ signals it can be concluded that only a small part of the 
induced toxicity is caused by overstimulation of NMDA receptors.

Discussion

Within this study, we analyzed the suitability of non-differentiated and differentiated 
SK-N-SH cells as a human cell model for neurodegeneration induced by NMDA receptor 
overstimulation. Of particular interest is the functional expression of GluN2B containing 
NMDA receptors due to their role in different neurodegenerative diseases.

In line with previous studies, we showed expression and colocalization of the NMDA 
receptor forming subunits GluN1 and GluN2B in both non-differentiated and differentiated 
SK-N-SH cells, which is needed for functional NMDA receptor formation [26]. However, in 
comparison to these results an increase in fluorescence intensity was only detected for the 
GluN2B subunit in differentiated cells. Furthermore, we observed a neuronal phenotype 
including expression of the neuronal marker MAP2 under both conditions as previously 
described [24, 25].

Previous studies lacking a direct functional comparison between non-differentiated and 
differentiated cells in different assays hampering the critical appraisal how the differentiation 
status influences the suitability of SK-N-SH cells to serve as a NMDA receptor cell model 

Fig. 5. Time-dependent 
cytotoxicity evaluated via 
bioelectrical impedance 
assay. a Illustration of the 96-
well plate and a single well 
with reference and sensing 
electrode. b, c Side-view of 
a single well without (b) 
and with (c) attached cells 
leading to an alteration of 
impedance recordings. d, e 
Representative proliferation 
graphs of non-differentiated 
(d) and differentiated (e) 
cells incubated with 0 mM 
(S)-glutamate (gray), 50 mM 
(S)-glutamate without NMDA 
receptor inhibitor (red) as 
well as 50 mM (S)-glutamate 
together with 100 µM ketamine 
(blue) or 10 µM WMS14-10 
(magenta). Application of 
different compounds was 
performed at timepoint 0 
h. f, g Growth evaluation 
of non-differentiated (f) 
and differentiated (g) cells 24 h after application of different compounds (blue arrow in d, e). Data were 
statistical evaluated by one-way-ANOVA followed by post hoc mean comparison Tukey test. P-values are 
indicated by ns (not significant) for p > 0.05 and *** for p<0.001.
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[25, 26, 28, 38, 52]. Our results show that the presence of more than 25 mM (S)-glutamate 
lead to a reduction in cell viability, which is almost independent from the differentiation 
status. This concentration is at least 1000-fold higher than the EC50 value of (S)-glutamate 
activating GluN1/GluN2B containing NMDA receptors expressed in Xenopus laevis oocytes 
[53]. Moreover, this concentration is also several fold higher than the (S)-glutamate 
concentrations used in other NMDA receptor cell models indicating that the reduction in 
cell viability might be not exclusively induced by NMDA receptor overactivation but also 
overstimulation of other glutamatergic receptors [49, 54, 55].

Beside the induction of non-NMDA receptor mediated effects high agonist concentrations 
can also influence the activity of NMDA receptor inhibitors [46–48]. Therefore, the 
inhibitory effect of ketamine and WMS14-10 was analyzed in presence of high (S)-glutamate 
concentrations in Xenopus laevis oocytes. The results show that both compounds are able 
to fully inhibit the NMDA receptor even in presence of high (S)-glutamate concentrations 
without any significant loss in compound effectiveness. Consequently, both compounds 
should prevent NMDA receptor overactivation during neurodegenerative conditions. 
Simultaneously, supplementation of SK-N-SH cell media with 100 µM ketamine or 10 µM 
WMS14-10 for 24 h did not cause any significant reduction in cell viability excluding severe 
compound induced toxicity.

In presence of 50 mM (S)-glutamate, partial cell protection was only achieved by 100 µM 
ketamine using differentiated SK-N-SH cells, while 10 µM WMS14-10 failed to protect both 
undifferentiated and differentiated cells, even though the expression of GluN2B subunit rises 
in differentiated cells as indicated by fluorescence intensity. With respect to the previous 
data for 10 µM WMS14-10 these results indicate that the (S)-glutamate induced toxicity is 
not primarily generated by overactivation of GluN2B containing NMDA receptors. On the 
contrary, cell protection by 100 µM ketamine using differentiated SK-N-SH cells suggest a 
partial contribution of NMDA receptors to the induced cell death. However, main toxicity 
is not generated by NMDA receptor overactivation as visualized by the bioimpedance 
recordings. Furthermore, the protective effect of 100 µM ketamine might be also induced by 
indirect off-target effects due to residual activity at α7, Cav1.2 or high affinity state of the D2 
receptors [56–58].

The minor protective effect of ketamine as an unselective NMDA channel blocker in 
differentiated cells is also in accordance with the low intracellular Ca2+ signals. Although 
our plate-based assay showed a minimal rise of Ca2+ levels in differentiated cells compared 
to native cells under the influence of 50 mM (S)-glutamate, the overall Ca2+ signal was not 
significantly different to Ca2+ levels in untreated cells. In line with this, previous single 
cell recordings could not detect any Ca2+ signals in non-differentiated cells under NMDA 
stimulating conditions [26].

Conclusion

In summary, our results consistently show that neither native nor differentiated SK-N-
SH cells are suitable to serve as a neurodegenerative cell model for NMDA receptor induced 
excitotoxicity. While (S)-glutamate toxicity in native SK-N-SH cells is completely independent 
from the NMDA receptor, cytotoxic effects in differentiated cells depend only to a minor 
extend on the overstimulation of NMDA receptors hampering a clear identification of novel 
neuroprotective NMDA receptor inhibitors. Furthermore, this small fraction of NMDA 
receptor-induced toxicity is not exclusively mediated by GluN2B containing NMDA receptors 
since only ketamine as an unselective inhibitor was able to partially inhibit cell toxicity.
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