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Abstract
Background/Aims: Many questions in cancer biology remain unanswered. Perhaps the most 
important issues remaining to be addressed focus on the molecular basis of carcinogenesis. 
Today’s cancer focus lies on genetics and gene expression, which is unlikely to explain the true 
cause of most cancers or lead to a cure. Methods: Earlier, we provided a plausible mechanism 
for this process, specifically, that most cancers develop in response to pathogenic stimuli 
that induce chronic inflammation, fibrosis, and remodeling of the cellular microenvironment. 
Collectively, these changes generate a precancerous niche (PCN) in which fibrosis and 
remodeling are ongoing secondary to persistent inflammation, followed by the deployment 
of a chronic stress escape strategy (CSES). If the CSES is unsuccessful, the cell undergoes a 
normal cell to cancer cell transformation (NCCT). Results: Here, we highlight the critical role 
of fibroblasts as the first cells to undergo neoplastic transformation to a cancerous phenotype 
which is based on several critical findings. First, persistent disruption of homeostatic crosstalk 
increases lysyl oxidase activity and lysine oxidation which leads to increased collagen stiffness 
and decreased elasticity. If unresolved, chronic tissue stress will lead to an escape strategy 
that involves the recruitment of fibroblasts and fibrocytes from the bone marrow as well as 
cells undergoing an epithelial-mesenchymal transition (EMT). This yields a heterogeneous 
pool of cells that express both epithelial and mesenchymal markers and that will ultimately 
differentiate into cancer-associated fibroblasts (CAFs). Finally, CAFs undergo a mesenchymal-
epithelial transition (MET) and express epithelial markers that facilitate their integration into 
the target tissue. Conclusion: Here, we review the published findings that led us to this 
conclusion which is the most plausible answer to this critical question.
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Introduction

Among the major issues in cancer medicine remaining to be addressed is the question 
of why the increased patient survival is measured in weeks and months but not in years. 
One reason for this conundrum is that cancer biology remains incompletely understood. 
We have only a limited appreciation of important issues related to cancer diversity [1, 2], 
heterogeneity [3–12], and resistance to therapy [13–16], as well as those leading to failed 
pretreatment strategies [17], and sensitivity testing [18]. Thus far, only a small proportion 
of cancer patients have truly benefitted from existing therapies [19]. While many believe 
that the discovery of new cancer-specific genes and epitopes will lead to promising drug 
candidates for “personalized” therapy [20], real-world data suggest that the gains from 
these efforts typically are smaller than anticipated [21, 22]. Hence, many basic concepts in 
cancer biology still need to be considered (Supplement Part 1, Cancer basics, available at 
cellphysiolbiochem.com).

Since the acievements of COVID mRNA vaccines, such vaccines against cancer are seen 
as the game changers for the future [23, 24], although we know that the stock market is 
driven by psyschology [25]. Clearly, cause-based approaches, for example, extensive use 
of the vaccine designed to combat human papillomaviruses (HPV), has made a significant 
difference in the clinical outcomes of cancers associated with this pathogen. Note that, in this 
case, these viruses are the known cause of most cervical and oropharyngeal cancers. With 
appropriate use of the antiviral vaccine, these cancers can be virtually eliminated [26, 27].

There is a need for a more precise and in-depth understanding of the essential causes 
of and mechanisms underlying carcinogenesis. Toward this end, the first important question 
that needs to be answered is how specific signaling and crosstalk pathways contribute to the 
development of cancer. We addressed this issue in our earlier paper entitled “Epistemology 
of the Origin of Cancer: a new cancer paradigm” [28] as well as in several other publications 
[29–43]. In the first of these aforementioned papers [28], we reviewed findings that 
suggested that most cancers originate after a defined sequence of events, beginning with 
(1) a pathogenic stimulus, followed by (2) chronic inflammation that leads to (3) fibrosis 
and associated changes in the cellular microenvironment. If this state persists, (4) a pre-
cancerous niche (PCN) develops, which triggers the deployment of (5) a chronic stress 
escape strategy (CSES). If this condition fails to resolve, (6) normal cells may transition to 
cancer cells (NCCCT) occurs. A great deal of literature supporting this paradigm has been 
published in recent years (Supplement Part 2, Recent evidence (since 2019)).

Also remaining is the question of which cell type is the first to undergo normal cell-to-
cancer cell transition. In this paper, we provide a plausible, albeit complex, set of findings 
that fibroblasts are the critical cells that undergo NCCCT in response to pathogenic and 
inflammatory stimuli in most human cancers.

Epithelial ultrastructure

Because ~90% of all cancers are comprised of epithelial cells (Supplement Part 1, 
Cancer basics), the literature on this subject focuses on this cell type and its physiologic 
ultrastructure. One of the critical structural elements of the epithelium is the basement 
membrane (also known as the basal membrane, or lamina basalis), which can be found at 
the interface between cells and the underlying stroma that includes several sub-laminal 
layers [44–46]. The basement membrane not only promotes tissue stability, it also plays 
an active role in the complex internal and external crosstalk and signaling pathways within 
a living organism. The basement membrane includes three layers known as the lamina 
densa, the lamina rara interna, and the lamina fibroreticularis, which can be delineated and 
differentiated by electron microscopy. A simplified schematic of this structure is presented 
in Figure 1. While earlier reports mentioned a lamina rara interna (lamina lucida), this 
structure has since been identified as a fixation artifact [47].
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Fig. 1. Simplified ultrastructure of the epithelium and the basal membrane (basement membrane). 
The cell-cell junctions with its communication, occluding and anchoring junctions relevant for cell-cell 
communications were reviewed in detail earlier together with a schematic drawing of junctions between 
epithelial cells [29]. This schematic drawing is enlarged with E-cadherin and the underlying basal membrane 
(basement membrane) and the lamina propria. The lamina densa immediately beneath the basal membrane 
has an average thickness of 50 nm (ranging from 20 to 300 nm). The thickness of the lamina fibroreticularis 
is typically 200 to 500 nm. The basal membrane consist out of the lamina densa, lamina rara interna 
and lamina fibroreticularis. The lamina densa consist out of Collagen IV, Perlecan, Nidogen-1 (entactin), 
laminin 332 (Lam332), laminin311, and laminin 511. The interconnection to the epithelium is organized 
via Collagen XIII, Collagen VII, cluster of differentiation 151 (CD151), α6β4 integrin, α3β1 integrin, laminin 
332, and laminin 511. To improve the overview of the simplified schematic structure, some components 
are not shown (Collagen XIII, α3β1 integrin, laminin 311, laminin 511 and other components).  The lamina 
fibroreticularis consists of Collagen III (reticular fibers), and anquoring plaques (Collagen IV) and Collagen 
VIII and includes fibroblasts. Their inactive form, fibrocytes, are below located in the lamina propria within 
the network of Collagen I, arteriols, venols, and lymphatic drainage. The epithelial layer is connected to 
the sublayer space of the lamina densa by keratin intermediate filaments, α6β4-integrins, α3β1 integrins, 
bullous pemphigoid antigen 1 (BPAG1, also known as dytonin, DST), plectin, collagen-type XVII (Col17), and 
cluster of differentiation 151 (CD151) of the hemidesmosomes. These cells also express surface receptor 
proteins (i.e., CD44 and laminin receptors). The connection to the lamina densa mainly consists of anchoring 
filaments, which are composed of laminin 332 and the extracellular COL17A1, α6β4 integrins, CD151, 
laminin 311, and laminin 511. The lamina densa contains collagen-type IV (Col4), laminin 332, laminin 311, 
laminin 511, nidogen-1 (entactin), and perlecan (also known as heparan sulfate proteoglycan 2, HSPG2). 
The lamina fibroreticularis consists of collagen-type III (Col3, i.e., reticular fibers), collagen-type IV (Col4, 
i.e., anchoring plaques), and collagen-type VII (Col7, i.e., anchoring fibrils). Fibroblasts play a significant role 
in maintaining the ultrastructure and stability of these layers. Additional relevant historical remarks and 
information on fibroblasts and fibroblast biology are provided in Supplement Part 3, Fibroblasts: historical 
consideration.



Cell Physiol Biochem 2023;57:512-537
DOI: 10.33594/000000672
Published online: 27 December, 2023 515

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2023 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Brücher et al.: Epistemology II: Fibroblasts First Undergo Neoplastic Transformation

Fibroblasts and stiffness

Fibroblasts are ubiquitous cells derived from the embryonic mesenchyme that are found 
predominantly outside the lamina densa. Fibroblasts are capable of producing and secreting 
all extracellular matrix (ECM) components required by adipocytes as well as macrophages, 
mast cells, and other leukocytes [43, 48].

Fibroblast responses to chemical carcinogens

Fibroblast cultures generated from normal mammalian tissue that were treated with 
the carcinogen, 20-methylchloranthrene, for four months to as long as four years converted 
into epithelial-like cells and became laterally adherent, depending on the duration of 
treatment [49]. When these cells were injected into mice, tumors arose at the injection site. 
Interestingly, tumors also arose in mice injected with fibroblasts that had not been exposed 
to the carcinogen, a finding that was attributed to the unique and specific properties of the 
fibroblasts themselves [50, 51]. After numerous passages in vitro over the course of three 
years, the incidence of carcinoma dropped from 68% to 1%. Because no other explanation 
could be found at the time, this observation was attributed to the acquisition of one or more 
functional mutations. Today, these findings would be recognized as a primary mesenchymal-
epithelial cell transition (MET) that was followed three years later by an epithelial-
mesenchymal cell transition (EMT). While we now have a clear mechanistic understanding 
of this observation, we can reflect on the fact that many unexplained findings were, and 
continue to be, attributed to mutational events [30].

The same group then explored two different clones of the same fibroblast strain and 
identified one that was highly aggressive (carcinoma incidence of 97%) and another that 
was more benign (carcinoma incidence of 1%); however, these results were observed only 
in mice that had first been irradiated; this was attributed to differences in immunity [52]. 
Furthermore, this group reported that mouse cell cultures that included stromal cells with 
epithelial glandular architecture underwent a cancerous transformation after 1.5 years and 
35 transplantation generations in vitro and were capable of generating mammary carcinomas 
[53]. Similarly, fibroblasts infected with Rous Sarcoma Virus (RSV) became spindle-shaped 
(fibroblast-like) or amoeboid phagocytes; after re-implantation, the fibroblast-like cell 
tumors grew and persisted, while the amoeboid cells always gave rise to tumors [54]. Taken 
together, these findings reveal how migrating fibroblasts promoted continuous cancer 
growth in vitro and likewise induced an immunosuppressive PCN, as this phenomenon is 
currently described [55]. Transformed cancer cells exhibit high glycolytic activity, which, 
intriguingly, was reported to be even greater than the enzymatic activities of whole cells or 
extracts calculated on a per-cell basis [56]. Of note, increased glycolytic activity was detected 
in rapidly-growing cultures long before cancerous transformation and, interestingly, virus-
infected and uninfected cells exhibited the same morphologic changes related to loss of 
contact inhibition [57] including a decrease in the number of anchoring junctions [29].

Spontaneous transformation of cells with morphological features typical of both 
cancerous and non-cancerous cells was accompanied by an increased nuclear:cytoplasmic 
ratio, cytoplasmic basophilia, and a change in the size and shape of cells and their nuclei 
even before the transformation process first occurred. Furthermore, results from multiple 
experiments revealed that transition to a cancer cell phenotype was inhibited in the 
presence of fetal bovine serum [58]. Of note, the first tumor cell generations exhibited 
prominent cytological changes, including changes in cell shape and reduced spreading; this 
was followed by more random migration patterns. Cancer cell transition was also associated 
with morphological changes that included a decrease in the projected area of cytoplasmic 
lamellae, the nucleus, and the dry mass of the lamellar cytoplasm.
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In 1960, Sir John Gurdon performed experiments in frogs that proved cells were capable 
of changing after undergoing differentiation. Among the findings, he reported that these cells 
could revert not only to a more primitive state but also to one with higher developmental 
potential [59] and differentiated cells retained this ability [60, 61].

Interestingly, scientists working at that time did not perceive the transition of fibroblasts 
into neoplastic epithelial cells as a general model of carcinogenesis, as discussed in reference 
[62]. Epithelial-like cells revealed different agglutination properties and expression patterns 
[63]; which may explain in part why fibroblasts were not considered as initial cancer 
precursor cells despite many lines of converging data. Even later on, this transition stage was 
not recognized as a phenomenon of critical importance. As noted by Hentzer et al. [64], “…
unidentifiable cells were characterized by dense zones of the cell membrane and an adjacent 
extracellular basal lamina-like material…”. In this context, we recall that cardiac fibroblasts 
originate from epithelial cells of the proepicardium in a developing embryo via a process 
known as EMT. Likewise, valvular fibroblasts arise via endothelial-mesenchymal transition 
(EndMT) of cells in the endocardium [65].

Conversion of fibroblasts to stem cells

In 1981, Evans and Kauffman [66] identified, isolated, and cultured embryonic stem 
cells from mice. Somewhat later, Takahashi et al. [67, 68] altered four specific genes and 
successfully converted skin-derived fibroblasts into pluripotent stem (iPS) cells. Similarly, 
Gordon et al. [69], reported that cortisone-treated cultured fibroblasts could undergo 
conversion into adipocytes. In other experiments, brown fat precursors were identified as 
adipocyte stem cells, although cell differentiation in these experiments remained incomplete 
[70]. Furthermore, various cell types were available in these experiments, including “…
fibroblasts, adipocytes, and adipose precursor cells before determination (adipoblasts) and 
after determination (preadipocytes)…” [71]. Collectively, these studies led to the introduction 
of the concept of stem cells [72].

Fibrocytes are fibroblasts in their inactive form and found predominantly within the 
lamina propria in a region beyond the lamina densa. Epithelial migration takes place during 
embryologic development and fibroblasts are first detected under the basal membrane 
and they migrate during maturation to the alveolar wall [73]. Importantly, fibroblasts can 
develop from epithelial cell precursors during the process of tissue fibrosis [74]. Additional 
fibroblasts can be recruited from the deeper layers, which also are a source of circulating 
fibrocytes [75]. Furthermore, fibroblasts from bone marrow can be recruited to fibrotic 
lesions [76] and importantly, also to the PCN by the neoplastic cells themselves [38].

Chronic inflammation secondary to tumor growth factor beta (TGF-β1)-mediated 
pathways, including those that lead to both Smad and non-Smad JNK/AP-1 signaling results 
in increased collagen production by fibroblasts with lysyl oxidase (LOX) activity [28] (FIGURE 
2). Several previous studies reviewed the origin and nature of LOX and its isoforms which 
are triggered by the complex cascade of chronic inflammation to generate fibrosis and the 
PCN [28, 38]. Copper and lysyl tyrosyl quinone are both critical co-factors that facilitate the 
LOX-mediated conversion of lysine residues to α-aminoadipidic-δ-semialdehydes (allysines) 
in collagen and elastin precursors.
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Fig. 2. Simplified scheme representing ongoing disruption of homeostatic crosstalk originally discussed in the paradigm 
presented in our earlier publication [28] in the upper drawn (Fig. 2a) and depicting the lamina fibroreticularis layer and 
its precancerous niche (PCN) in the lower drawn as a cutout (Fig. 2b). As shown in the upper drawn (Fig. 2a), a pathogenic 
stimulus induces chronic inflammation which eventually leads to fibrosis with remodeling of the cellular microenvironment. 
These changes generate a precancerous niche (PCN), which is the end-product of fibrosis, remodeling secondary to persistent 
inflammation, and the deployment of a chronic stress escape strategy (CSES). Part of this Fig. was published with modifications 
from the original illustration from [35]. The lower drawn (Fig. 2b) is a cutout of the lamina fibroreticularis layer with additional 
fibroblasts that produce intracellular procollagen alpha-chains and release extracellular helical collagen trimers and mature 
procollagen. Ongoing disruption of homeostatic crosstalk results in the continuous increase in lysyl oxidase (LOX) activity. 
This result in increased oxidation of lysine residues in collagen leading to increased stiffness and decreased elasticity. Common 
abbreviations are in bold text, followed by the common trivial names and the International Union of Pure and Applied Chemistry 
(IUPAC) designations (as available): PCN, precancerous niche; CSES, chronic stress escape strategy; SphK, sphingosine kinase 
isoform; S1P, sphingosine-1-phosphate; IL-6, interleukin 6; IL-8, interleukin 8; TNFα, tumor necrosis factor alpha; IFNγ, 
interferon gamma; ALOX, lipoxygenase, arachidonate lipoxygenase; ALOX12, 12-lipoxygenase, 12-LOX, 12S-LOX, arachidonate 
12-lipoxygenase 12S type; ALOX5, 5-lipoxygenase, 5-LOX, arachidonate 5-lipoxygenase; 12-HETE, 12-hydroxyeicosatetraenoic 
acid; LTA4 leukotriene A4, 4-[(2S,3S)-3-[(1E,3E,5Z,8Z)-tetradeca-1, 3,5, 8-tetraenyl]oxiran-2-yl]butanoic acid; LTB4, leukotriene 
B4, (5S,6Z,8E,10E,12R,14Z)-5, 12-dihydroxyicosa-6, 8,10, 14-tetraenoic acid; LTC4, leukotriene C4, (5S,6R,7E,9E,11Z,14Z)-6-
[(2R)-2-[[(4S)-4-amino-4-carboxybutanoyl]amino]-3-(carboxymethylamino)-3-oxopropyl]sulfanyl-5-hydroxyicosa-7, 9,11, 
14-tetraenoic acid; LTD4 leukotriene D4, (5S,6R,7E,9E,11Z,14Z)-6-[(2R)-2-amino-3-(carboxymethylamino)-3-oxopropyl]sulfanyl-
5-hydroxyicosa-7, 9,11, 14-tetraenoic acid; LTE4, leukotriene E4, (5S,6R,7E,9E,11Z,14Z)-6-[(2R)-2-amino-2-carboxyethyl]
sulfanyl-5-hydroxyicosa-7, 9,11, 14-tetraenoic acid; 5-oxo-ETE, (6E,8Z,11Z,14Z)-5-oxoicosa-6, 8,11, 14-tetraenoic acid; Cox, 
cyclooxygenase; Cox-1, cyclooxygenase 1; Cox-2, cyclooxygenase 2; Cox-3 isoform of Cox-2 (in brackets); PGG2, prostaglandin 
G2, (Z)-7-[(1S,4R,5R,6R)-5-[(E,3S)-3-hydroperoxyoct-1-enyl]-2, 3-dioxabicyclo [2.2.1]heptan-6-yl]hept-5-enoic acid; PGH2, 
prostaglandin H2, (Z)-7-[(1S,4R,5R,6R)-5-[(E,3S)-3-hydroxyoct-1-enyl]-2, 3-dioxabicyclo [2.2.1]heptan-6-yl]hept-5-enoic acid; 
PGF2α, prostaglandin F2 alpha, (Z)-7-[(1R,2R,3R,5S)-3, 5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoic 
acid; PGD2, prostaglandin D2, (Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoic acid; 
PGE2, prostaglandin E2, (Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoic acid; MDA, 
malondialdehyde, propanedial; TXA2, thromboxane A2, (Z)-7-[(1S,2S,3R,5S)-3-[(E,3S)-3-hydroxyoct-1-enyl]-4, 6-dioxabicyclo 
[3.1.1]heptan-2-yl]hept-5-enoic acid; CYP*, cytochrome P450 isoforms; 20-OH-PGE2, 20-hydroxy prostaglandin E2; 20-HETE, 
20-hydroxyeicosatetraenoic acid, (5Z,8Z,11Z,14Z)-20-hydroxyicosa-5, 8,11, 14-tetraenoic acid; SOX, [sex-determining region Y 
(Sry) box-containing] transcription factor family; IL-β1, interleukin beta 1; IL-33, interleukin 33; ROS, reactive oxygen species; 
CXC CC, chemokine receptors; TNFα, tumor necrosis factor alpha; αSMAD, alpha-smooth muscle actin; miR21, micro RNA-21; 
p300, protein 300 (p300-CBP coactivator family); SP1, specificity protein 1; AP1, activator protein 1; E2F4/5, cytoplasmic 
complex of Smad3, retinoblastoma-like protein 1 (P107, RBL1), E2F4/5 and d-prostanoid (DP1); p107, retinoblastoma-like 
protein 1, RBL1; LOX, lysyl oxidase; TGFβ, transforming growth factor beta; Pro-MMP-9, pro-matrix metalloproteinase 9; Pro-
MMP-1, pro-matrix metalloproteinase 1; Pro-MMP-7, pro matrix metalloproteinase 7; SNAIL, zinc finger protein SNAI1; MMP-1, 
matrix metalloproteinase 1; MMP-7, matrix metalloproteinase 7; MMP-2, matrix metalloproteinase 2; E-Cadherin, CAM 120/80 
or epithelial cadherin, cadherin-1, epithelial cadherin; PI3K, phosphatidylinositide 3-kinase; FOXO3a, forkhead box protein O3a; 
p120, catenin delta-1, protein 120; Rho, Ras homolog gene family, member A; Rac1, Ras-related C3 botulinum toxin substrate 1; 
cdc42, cell division control protein 42 homolog; BIM, Bcl-2 interacting mediator of cell death; PUMA, BH3-only protein; CXCR4, 
C-X-C motif of chemokine receptor 4.
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Increased stromal rigidity induces mechanotransduction and is associated with poor 
survival in most cancers. LOXL2 and TGF-β1 receptor inhibition by trihydrophenolics 
attenuated lung and cancer fibrosis [38] while various signaling pathways and lysyl oxidase 
isoforms need to be considered. Of particular note, activation of the isoform, lysyl oxidase-
like-2 (LOXL2) will result in decreased E-cadherin and increases fibronectin, vimentin, and 
metalloproteinases, and thus explains at least in part how the vicious cycle of ongoing chronic 
inflammation promotes the development of the PCN via the induction of lamellipodia and 
consequently in increased cell mobility and migration.

In a recent series of experiments, Wahlsten et al. [77] observed that a three-fold increase 
in collagen hydrogel stiffness-induced fibroblast maturation and proliferation. Fibroblasts 
at different stages of maturation can be detected simultaneously in the same organism 
including those with pronounced functional and structural variations with behaviors that 
are similar to embryonic cells [78–80]. Each cell is unique because all may be at different and 
distinct points in their maturation process; this results in general heterogeneity throughout 
[81–83]. As in all cells, fibroblast gene expression patterns are maturation-dependent 
[84]. Cells at different stages of maturation and development have distinct propensities for 
transformation and thus exhibit considerable heterogeneity [85].

For example, while fibroblasts can round up and stop migrating, they can eventually 
recover and move again [86]. Fetal fibroblasts and fibroblasts isolated from cancer patients 
actively express migration stimulating factor (MSF). This may explain why fibroblasts 
from cancer patients exhibit fetal-like migratory behavior and increased cell density while 
fibroblasts isolated from patients with more benign diseases do not [87]. Furthermore, 
epithelial cells can extend basal lamellipodia that facilitate active crawling [88], as discussed 
in depth in an earlier study [89].

Fibroblast-specific protein-1 (FSP1, S100A4) was initially identified exclusively in 
fibroblasts and was not detected in epithelial cells [90]. De novo expression of FSP1 is one 
of the critical events associated with early EMT; others include up-regulation of vimentin 
expression and reductions in cytokeratin [91]. However, FSP1 expression in this setting does 
not rule out the existence of additional cellular sources; for example, FSP1 has been found 
in CD4+ and CD8+ T-lymphocytes (but not B-lymphocytes), subendothelial smooth muscle 
cells as well as those in the tunica adventitia and tunica media, epithelial cells in the kidney 
and the bladder, the stroma of the prostate, adipocytes, and skeletal muscles [92]. Among 
its activities and functions, FSP1 promotes EMT, fibrosis, pulmonary vascular disease, 
metastatic tumor development, and increased tumor cell motility and invasiveness.

During renal fibrosis, fibroblasts are derived primarily from the renal epithelium via a 
process of cell transition and in smaller amounts from cell migration from the bone marrow 
[93]. Stromal cells migrating from bone marrow that can develop a fibroblast phenotype 
in tissues are an important source of fibroblasts available for recruitment [94]. One of the 
consequences of ongoing collagen production and LOX-mediated cross-linking is a substantial 
increase in stromal rigidity and associated reduced elasticity (FIGURE 2).

Stiffness, as indicated by the parameter κ, is defined as the resistance to deformation (δ) 
when subjected to an applied force (Ϝ). This relationship can be described by the one-degree 
model written as κ = Ϝ / δ. This is the formula for a basic elastic model, for example, one that 
can be used to represent a simple coil spring. However, this concept becomes somewhat 
more complicated if more than one-degree of force is applied to an object and if one needs 
to model responses in a three-dimensional space (i.e., the extracellular matrix). In this case, 
the stiffness of the matrix will depend on various dimensional forces, including the elastic 
modulus, which is a property of the constituent material. If the properties of the matrix and 
the material present different states of aggregation and tensions at the same time (i.e., the 
physical state), the complexity increases further. Johannes Diderik van der Waals (1837–
1923) described the dispersive forces (i.e., van der Waals forces) that control the interactions 
of the low-energy surfaces found between liquids. As we can see, an understanding of this 
concept is critical for an appreciation not only of physics but also of human biology.
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The stiffness concept was introduced to explain how durotactic velocity increases 
with the stiffness gradient as well as to highlight the differences between active traction at 
the front and in the rear ends of the cell [95]. The term durotaxis, which is defined as cell 
migration that depends on mechanical factors, was first introduced to explain the behavior 
of neurites in cell culture [96] and has since been used to describe cell migration in general 
[97]. Maximal cell motility occurs at intermediate stiffness and durotactic velocity increases 
with cluster size, the stiffness gradient, and actomyosin activity [95]. This concept helps us 
to understand cancer cell migration and its responses to these parameters. For example, 
cancer cluster cell velocity is minimal at low stiffness (0.2 kPa), peaks at intermediate 
stiffness (24 kPa), and decreases at high stiffness (200 kPa). However, each organ and tissue 
exhibits a characteristic physiological stiffness (within the limits of homeostasis). ECM 
stiffness and the speeds of cell migration depend on contractility mediated by non-muscle 
myosin II (NMMII) [98]. In Pallares et al. [95], the authors theorized that ”…local maximum 
velocity may theoretically exist on significantly stiffer ECMs (i.e., > 150–200 kPa).” Since that 
time, others have shown that fibrosis induces increases in ECM stiffness (120 kPa) and thus 
promotes EMT [99].

It is important to recognize that fibrosis is a wound-healing repair mechanism and thus 
an important part of physiological homeostasis; here, LOX inhibits fibroblast transformation 
as part of a negative loop. However, ongoing disruption of homeostasis secondary to an 
unresolved harmful stimulus and chronic inflammation will promote a pathological increase 
in stiffness. As a result, initial efforts to adapt and achieve allostasis involve fibroblast 
recruitment and thus increased production of intracellular alpha chains. This is accompanied 
by procollagen release to the extracellular space and the creation of helical trimers and mature 
tropocollagen. Increases in LOX activity will result in increased oxidation of lysine residues 
which will result in pathological collagen cross-linking and consequently increased stiffness 
and reduced elasticity. Increases in matrix stiffness will facilitate cancer cell transition.

Cell transition

Cell transition is a universal process that occurs in embryogenesis, tissue maturation 
and differentiation, and cell turnover, and which can promote imbalanced homeostasis. In 
humans, 10 to 50 million cells turnover each second [100, 101]. The average lifespans of 
various cells and cell types differ significantly [102–105]. Notable differences are observed 
in epithelial cells, including those of the gastric cardia (average lifespan of 9.1 days), gastric 
pylorus (1.8 days), small bowel (1.4 days), colon (10 days), rectum (1.4 days), anus (4.3 
days), and peritoneal wall (19.4 days). These values can be compared to those reported for 
the glandular epithelia, including cells in the liver (222 days), kidney (286 days), and thyroid 
(287 days). Furthermore, both EMT and mesenchymal-epithelial transition (MET) can be 
reversed in the presence of TGF-β [106].

Fibrosis induces signaling and crosstalk leading to mechanotransduction and 
consequently EMT [106–113]. ECM stiffness, including cell-matrix adhesions and 
cytoskeletal polarization, also induces EMT [99]. Decreased stiffness has been associated 
with inhibited EMT that is not dependent on apoptosis [114]. Increased levels of vimentin 
and decreased levels of E-cadherin and β-catenin are observed in the presence of increased 
ECM stiffness (e.g., 120 versus 20 kPa) [99], leading to elevations in chronic tissue stress. One 
of the consequences of this scenario is the chronic stress escape scenario (CSES) followed by 
normal cell-to-cancer cell transition (NCCCT).

Cell transition has been reported in all histological types of cancer, including epithelial 
cancers [115, 116], sarcomas [117, 118], leukemias [119–123], lymphomas [124], myelomas 
[125, 126], and central nervous system cancers [127, 128].

Cell transition toward pluripotency occurs in dermal fibroblasts undergoing maturation. 
After seven days, 20% of the cells express the pluripotent stem cell marker TRA-1-60, 
although only 1% generate colonies of induced pluripotent stem cells after replating; most 
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of the cells return to the original TRA-1-60-negative state [129]. As more fibroblasts mature, 
the percentage that reverts to the original state decreases under normal conditions.

Molecular mechanisms underlying EMT and MET

The process known as EMT was first described in 1982 [130, 131]. Many recent studies 
have focused on the process via which cancer cells undergo EMT and why circulating 
epithelial cells exhibit mesenchymal characteristics [132]. Epithelial cell transition results in 
cells with disrupted apicobasal polarity and disassembled cell-to-cell junctions that lead to 
impaired epithelial layer integrity and loss of its barrier function [133]. These findings also 
explain why the resulting cell phenotype includes a higher capacity for migration with cells 
moving away from their normal positions. Among these changes, cells that have undergone 
EMT can lose their solid-type morphology and acquire a fluid-like migratory phenotype; 
this is known as “unjammed transition” (UJT) [134]. The term “jamming” represents a 
collective invasion strategy used by cancer cells [135]. The results of several investigations 
have clarified this mechanism [134], and also yielded the term “unjamming cell transition” to 
reflect the responses of epithelial cells as they change from a silent to a migratory condition 
and undergo UJT [136 reviewed in 133].

Small ubiquitin-related modifiers (SUMOs) have a profound influence on cell transition. 
SUMOs are a family of proteins that are structurally similar to ubiquitin but exhibit distinct 
amino acid sequences and functions [137]. SUMO-1, SUMO2, and SUMO-3, are three distinct 
structural forms that bind to form covalent or non-covalent isopeptide bonds with ɛ-amino 
groups of acceptor Lys residues, a process known as “SUMOylation” [138–143]. At current 
writing, five isoforms of SUMO have been identified in the human genome [144].

SUMO biosynthesis and activation require multiple specific steps. SUMO protein 
undergoes proteolysis and becomes attached to a heterodimeric E1 complex (SAE1/UBA2). 
The energy for this reaction is provided by the ATP-dependent activating enzyme (E1). The 
SUMO peptide is subsequently transferred to the central E2 enzyme (UBC9); an E3 ligase 
attaches it to a target protein. Afterward, deconjugation occurs via the actions of SUMO 
proteases [144–147].

SUMO has been recognized as a post-translational modifier in hundreds of eukaryotic 
cells with metabolism-influenced signaling and crosstalk pathways. While SUMO-1 decreases 
autophagy [148, 149], it also significantly increases hypoxic cell stress [150], and induces 
the expression of Ras-related C3 botulinum toxin substrate 1 (RAC1) [149]. Collectively, 
this leads to microtubule polymerization and integrin clustering that will progress to lung 
cancer [151, 152], glioblastoma [153], endometrial cancer [154], actinic cheilitis and lip 
carcinoma [155], liver cancer [156, 157], gastric cancer [158] or pancreatic carcinoma [159]. 
SUMOylation is used by viruses to modify their own proteins [160, 161], most notably by 
HPV [162], cytomegalovirus (CMV) [163) or Epstein–Barr virus (EBV) [164, 165] to support 
their own replication.

The SUMO-specific protease 2 (SENP2) catalyzes deSUMOylation, thereby suppressing 
TGF-β-induced EMT [166]. Likewise, fibrosis is prevented/attenuated from inhibiting 
SUMOylation secondary to a decrease in TGF-β signaling [167]. However, SUMOylation is 
only one of the regulatory processes that promotes or inhibits various intracellular signaling 
pathways [168–170].

EMT and MET are mechanisms that explain cell migration, invasiveness, and metastasis 
and thus make pivotal contributions to the process of carcinogenesis. Cancer-associated 
fibroblasts (CAFs) also play a significant role in this process and are already present in 
precancerous lesions.
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Cancer-associated fibroblasts (CAFs)

Precancerous tissues exhibit increased stromal rigidity and reduced elasticity. Cancer-
associated fibroblasts (CAFs) have been detected in these lesions, including those leading to 
colorectal adenoma [171–174], ulcerative colitis [175], Barrett’s esophagus [176], atrophic 
gastritis [177], leukoplakia [178, 179], and pituitary adenoma [180]. CAFs have also been 
identified in precancerous lesions of the blood, for example, monoclonal gammopathy 
of unknown significance [181-183] and the breast. Tenascin, which is a marker for CAFs 
[184], has also been detected in precancerous breast lesions as well as in ductal or lobular 
carcinoma in situ [185–193].

While CAFs have been detected in epithelial cancers, they also promote carcinogenesis 
in sarcomas [194–196], leukemias [197–201], lymphomas [202-205], myelomas [183, 206] 
and central nervous system cancers [207–210]. CAFs exhibit considerable heterogeneity 
[211, 212]. Conversion of fibroblasts to CAFs has also been demonstrated [213].

When compared to their noncancerous counterparts, CAFs from human breast tumors 
exhibit greater up-regulation of NADPH oxidase 4 (Nox4) than epithelial cells. In addition, 
CAFs in breast tumors are associated with increased autophagy and survival via increased 
levels of nuclear factor erythroid 2-related factor 2 (Nrf2, also known as NFE2L2, Heme 
Binding Protein 1, HEBP1, nuclear factor, erythroid 2 like 2, IMDDHH, Nrf-2, NFE2 like bZIP 
transcription factor 2). Nox4 deactivation reverses these changes [214], which is consistent 
with findings resulting from a decrease in TGFβ-mediated fibroblast activation [215]. Nrf2 
was first isolated in 1994 [216] and has since been recognized as a dormancy marker in 
human breast cancer cells [217].

Administration of the aryl hydrocarbon receptor (AHR) agonist, 2, 3,7, 
8-tetrachlorodibenzo-p-dioxin (TCDD), results in increased collagen-type I (Col1A1), 
α-smooth muscle actin, and pro-inflammatory cytokine synthesis and decreased E-cadherin 
and claudin 1. These responses are associated with fibrosis upregulation and cell transition 
via AHR-mediated epidermal growth factor receptor/extracellular signal-related kinase 
(EGFR/ERK) signaling pathways [41] and induce AHR-mediated expression of Nrf2 [218]. 
Lung CAFs produce the tryptophan metabolite known as kynurenine (Kyn) which also 
increases AHR [219], and vimentin expression and AHR translocation [41]. AHR-mediated 
signaling induces EMT [220]; by contrast, cytoplasmic translocation of the AHR suppresses 
EMT [221]. Selective AHR blockade with 3, 3’-diindolylmethane (DIM) inhibits the Ras 
homolog gene, member A/rho-associated, coil-containing protein kinase 1 (RhoA/ROCK1), 
which modulates the cyclooxygenase-2/prostaglandin E2 (COX2/PGE2) pathway connected 
to nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB); this will result in 
EMT reversal [222].

The protein p120-catenin (p120[ctn]) can typically be detected at the membrane bound 
to E-cadherin. This is accompanied by Rho GTPase-Cdc42 signaling, which is important 
for membrane stability [223, 224]. This is accompanied by the loss of E-cadherin; loss or 
dysfunctional E-cadherin/catenin results in the redistribution of cytoplasmic p120 [225, 226]. 
An increase of N-cadherin expression together with a relocalization of N-cadherin, α-catenin, 
p-120, and β-catenin, will lead to fibroblast transformation into a cell with epithelial-like 
morphology [227]. The contributions of E-cadherin to functional homeostasis are important 
because these cells control cellular motility as well as p120ctn overexpression in fibroblasts. 
Results of transfection studies revealed that increased filopodial/lamellipodial activity in 
these cells was mediated by small guanosine triphosphatases (GTPases) of the Rho family 
[228, 229]. Here, the increase of N-cadherin, the loss of E-cadherin, and the expression of 
p120 promote an EMT phenotype in the surrounding fibroblasts [230]. Furthermore, p120 
expression is a co-regulator of the fibroblast cell cycle and exhibits an increased G1 to S 
phase [231]. Fibroblasts exposed to a pathogen, for example, Abelson murine leukemia virus 
(MuLV), generate TGF release and an increase in p120 protein [232].

Kaiso is a bimodal transcriptional repressor that contains both a zinc-finger and a BTB/
POZ domain [233] that has been associated with protective effects in triple-negative breast 
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cancer [234]. By contrast, nuclear Kaiso has been associated with clinically aggressive breast 
cancer [235]; nuclear localization may promote both an aggressive phenotype and EMT [236, 
237]. Kaiso phosphorylation leads to a functional switch toward oncogenesis by promoting 
cancer cell growth in vivo [238]. This results in cytoplasmic accumulation and binding to 
p120 and 14-3-3 family proteins and will ultimately lead to the translocation of Kaiso from 
the nucleus into the cytoplasm and a negative feedback loop associated with the Kaiso target 
gene, cadherin 1 (CDH1) in normal tissues. This largely explains why cytoplasmic Kaiso is 
associated with poor prognosis in lung cancer [239]. Kaiso also promotes EMT via its capacity 
to regulate miR-200c [240]; by contrast, miRNA-4262 upregulation inhibits EMT [241].

Silencing of p120 decreases fibrosis [242] and activates p120/Kaiso in the absence of 
Wnt/Smad/ZEB signaling, thereby preventing EMT [243]. Fibroblast and surface protein 
markers are expressed on both benign and malignant fibroblasts and epithelial cells 
[244]. Marker expression is not fibroblast or CAF specific, but rather is associated with the 
acquisition of the mesenchymal phenotype by epithelial cells during EMT.

Consequence

Immunosuppression is a common feature of disrupted homeostasis observed in cancer; 
CAFs become dominant in this setting. These findings are supported by gene co-expression 
data [245]. Histopathologically, airway epithelial cells that have undergone EMT have also 
been detected in immunodeficient patients who have undergone organ transplantation 
[246].
Persistent disruption of homeostatic crosstalk generates a precancerous niche (PCN) with 
ongoing fibrosis and remodeling by LOX; the CSES deploys EMT to avert and resolve this 
situation. In this setting, the microenvironment remains under increasing chronic stress 
with continuous increases in stiffness due to fibroblast collagen production and LOX 
activity [28, 29, 33–43]. This amplifies fibroblast activation which results in increased 
collagen production and cross-linking. This also results in the induction of IL-6 and activator 
protein 1 (AP-1) which leads to inflammation and stroma production. Of note, LOX activates 
~134 genes expressed by fibroblasts [247]. Further increases in fibronectin, vimentin, 
and metalloproteinases together with decreases in E-cadherin explain why epithelial cell 
separation can occur more readily under these conditions. EMT, as well as the recruitment of 
fibrocytes and fibroblasts from the bone marrow collectively explains the extent of fibroblast 
heterogeneity observed under these conditions. Here, epithelial cells undergo EMT to 
fibroblasts, which will contain epithelial markers (FIGURE 3). As chronic inflammation 
persists and fibrosis increases, many signaling and crosstalk pathways are activated. This 
creates a favorable microenvironment in which affected cells become more susceptible to 
neoplastic transformation [28, 29, 33–43].
Results of experiments performed in the blind mole rat, Spalax, which is a long-lived 
mammal that is resistant to chemical carcinogenesis and cancer reveal that their fibroblasts 
can suppress colony formation in human breast cancer cell lines [248–250]. Unlike human 
or mouse fibroblasts, Spalax fibroblasts can promote continuous downregulation of 
inflammatory signals and thus can limit aging-associated chronic inflammation [251].
Considering there is very high heterogeneity between different cancer types, another 
question is, if the heterogeneity between different cancer types is observed after the initial 
cell is transformed or before. Much (or all) of the observed heterogeneity observed in different 
cancer types are related to factors that include a) stage of cancer at the time of observation; 
b) morphology associated with organ containing the tumor, e.g., lung, liver, breast, colon, etc., 
and c) spread of the tumor within the affected organ. Based on our understanding and of 
that of the literature, and in the context of the cancer paradigm “Epistemology of the Origin 
of Cancer” [28–43], the earliest changes that occur in the transformation of a normal cell to 
a cancer cell must be common to most solid cancers and this “first cancer cell” is a fibroblast, 
not an epithelial cell though later in the process of carcinogenesis, cancer cells “appear” as 
an epithelial type.
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Currently, cancer tissues collected during a biopsy or surgery are fixed and reviewed 
by a pathologist who performs a microscopic evaluation to determine the cell type and 
morphology. These methods continue to have a powerful influence on the choices of cancer-
specific therapeutics. Of note, most cancerous tissues obtained in this fashion will exhibit 
an epithelial morphology. This may have led to the assumption that most cancer cells must 
originate from once healthy epithelial cells. As demonstrated, the cells that appear to be 
epithelial and that express epithelial markers may have been fibroblastic in origin. In this 
manuscript, we provide evidence suggesting that fibroblasts serve as the initial precursors 
to these cancer cells.

Conclusion

Retrospectively, we may wonder why physiological observations that provided us with 
the information needed to address this unsolved puzzle were unseen though right in front 
of our eyes. However, we may also recognize that the physiological complexity was such that 
these strands could not be woven together. As stated by Friedrich Schiller in 1796 (English 
translation) “What’s the hardest of all? What you think is the easiest, to see with your eyes 
what’s in front of your eyes” [252]. It was not by accident that Professor Frithjof Hammersen 
(1889–1984) included this quote in his famous atlas of histology [253].

Fig. 3. The chronic stress escape strategy (CSES) deployed in a precancerous niche (PCN) followed by 
normal cell-to-cancer cell transition (NCCCT). Unresolved, chronic tissue stress in a precancerous niche 
(PCN) is characterized to lead to an escape strategy, chronic stress escape strategy (CSES), that involves the 
recruitment of fibroblasts and fibrocytes from the bone marrow as well as cells undergoing an epithelial-
mesenchymal transition (EMT). This yields a heterogeneous pool of cells that express both epithelial 
and mesenchymal markers that will ultimately differentiate into cancer-associated fibroblasts (CAFs) in 
the PCN. The persistent disruption of homeostatic crosstalk increases lysyl oxidase activity and lysine 
oxidation which will lead to increased collagen stiffness and decreased elasticity. Finally, CAFs undergo a 
mesenchymal-epithelial transition (MET) and express epithelial markers that facilitate their integration into 
the target tissue. The continuous increase in CAFs represents the final step that leads to the complete and 
unresolvable disruption of physiologic homeostasis. CAFs then undergo MET; these cells, which continue to 
express epithelial markers, and become the first cancer cells. These former fibroblasts are then integrated 
into the epithelium (FIG. 3).
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In regard to our today’s fibroblasts knowledge, we stand on the shoulders of giants, 
among them, Carl Bogislaus Reichert (1811–1883) [254], Hermann Lebert (1813–1878) 
[255], Rudolf Virchow (1821–1902) [256], Wilson Fox (1831–1887) [257], Ernst Ziegler 
(1849–1905) [258], William Russell (1852–1940) [259], Santiago Ramón y Cajal (1852–
1934) [260], Leo Loeb (1869–1959) [261], and Alexander Alexandrowitsch Maximow 
(1874–1928) [262].

While the importance of fibroblasts and their contributions to carcinogenesis was 
suggested long ago (Supplement Part 3, Fibroblasts: historical consideration), epithelial 
cells are still believed to be the primary cell in this process, even in carcinoma in situ. While 
this is understandable, given that these are the first cells detected based on microscopic 
techniques typically used for diagnosis, it is important to have a sense of what changes have 
occurred previously. As discussed in this manuscript, accumulated evidence points to the 
fibroblast as the first cell that truly gives rise to cancer.

The findings illustrated in FIGURE 3 outline a complex but persuasive argument for 
the identification of the fibroblast as the first cancer cell. These findings also explain the 
considerable heterogeneity detected in the precancerous niche (PCN), which contains 
various types of stromal cells, cancer cells, and resected cancer masses. During cancer 
development, progression, differentiation, cell transition, and cell division, ongoing EMT 
followed by MET is also observed. This explanation provides insight into the many factors that 
may undermine therapies, including cell resistance (based on selection pressure, mutational 
burden, and expression of multidrug exporter pumps) and the extent of vascularization. 
Likewise, the low proliferative index of specific cancer cells will limit their susceptibility 
to cytotoxic chemotherapy. Multimodal therapy approaches alone are unlikely to result in 
a substantial difference when considering the most important issues for cancer patients, 
namely, increased survival measured in years rather than months or weeks.

Effective prophylactic measures and potential cures for cancer as well as prophylaxis 
will only emerge from an understanding of the correct etiology of this disease. Thus, further 
exploration is needed to define and characterize the sequence of events leading to the 
development of most cancers [28, 29, 33–43] and, as provided here, to formulate a plausible 
explanation of the origins of cancer together with a clear identification of the precursor cells 
that transition to cancer via the sequence of events defined as described above. Thus, we are 
now in a position to develop new anticancer strategies that target the precancerous niche 
(PCN); these and other rational therapies may lead us toward the original vision of “Imagine 
a world without cancer” [32].
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