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Abstract
Background/Aims: to determine the role of surgical stress on the formation of p53-positive 
and dark neurons (DN) in the hippocampus, and to examine the parallelism of their formation 
in the pyramidal layer of the hippocampus. Methods: Simulated septoplasty was performed 
on 20 Wistar rats. The hippocampus and dentate gyrus (DG) were examined, in which the 
number of DN and p53-positive neurons was determined at 2, 4 and 6 days after surgery. In 
each rat, 10 brain slices were stained with antibodies to p53 protein with Meyer’s haematoxylin 
and 10 slices were stained with Nissl toluidine blue. Hippocampal subfields CA1, CA2, CA3 and 
DG were studied. In the pyramidal subfield layer, the absolute number of neurons that were 
nuclear antibody-positive to p53 protein was counted, as well as the number of dark neurons. 
The counting area in each subfield was 20934±1260 µm2. Neurons are counted using the 
Aperio ImageScope program. For the histological specimen analysis, the ImageJ software was 
used. The data obtained using cell counting methods were presented as mean ± SE. Then, 
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they were compared between both groups using a t-test SPSS 21software. Results: Compared 
with the control group (n = 5), the number of DN and p53-positive neurons increased in 
experimental animals at all periods. A direct relationship was obtained between the increase 
in the number of DN and p53-positive neurons in the hippocampal formation. Septoplasty 
simulation in rats results in the pathogenetic cascades onset, which, in its turn, changes the 
morpho-functional properties of neurons of the pyramidal layer of the hippocampus and 
contributes to their neuroplasticity. Activation of NMDS receptors of neurons during stress 
apparently, initiates two ways of neuron life – the beginning of p53 protein expression and 
the DN formation. Both ways can finally lead to apoptosis. Conclusion: The formation of dark 
neurons and the expression of the p53 protein in them are most likely to be interconnected 
and can probably provide neuroprotective mechanisms.

Introduction

Simulated septoplasty in rats leads to the development of a powerful stress response. 
Few experimental data are available to determine the consequences of nasal surgery [1].

Various stressors lead to changes in the functional state of neurons with the development 
of subsequent morpho-physiological abnormalities [2]. The hippocampus receives special 
attention in stress because it is very sensitive to various damaging factors [3, 4]. In 
neuronal damage, as in damage to other cells, p53 protein is an activator of transcription 
of a specific set of target genes, a cell cycle inhibitory regulatory factor and an effector of 
cellular responses to damage, which include cell cycle arrest and apoptosis [5]. However, 
p53 has also been shown to be neuroprotective. For example, this has been shown in an in 
vivo model of tautopathy [6]. P53 controls the transcription of a group of genes involved in 
the synaptic function of neurons. The transcriptional control of p53 of these synaptic genes 
is conserved in mouse neurons and the human brain [6]. Morphologically altered neurons 
after exposure to stressors can have basophilia in their staining [3, 7]. Such neurons are 
usually referred to as dark neurons. They have specific morphological features: shrunken 
cytoplasm, karyopiknosis, corkscrew axon [3, 7]. Apoptosis is believed to occur in these 
neurons [8]. However, it is not excluded that dark neurons are capable of restoring their 
morpho-functional state under certain conditions [7].

However, no studies evaluating the parallelism of p53 protein expression in hippocampal 
neurons and the appearance of dark neurons there in have been performed in a septoplasty 
simulation in rats.

The aim of this study was to determine the role of surgical stress on the formation of 
p53-positive and dark neurons in the hippocampus, and to examine the parallelism of their 
formation in the pyramidal layer of the hippocampus.

Materials and Methods

In the study, 20 sexually mature male Wistar rats weighing 250±20 g were randomly divided into 
experimental (n=15) and control (n=5) groups. The rats were kept under controlled temperature (23±2.5°C), 
12-hour illumination and free access to water and food. Anesthesia was administered with zoletil 100 
solution (15 mg/kg) 10 min before surgery to 15 rats, which constituted the experimental group.

The animals were housed in a specially equipped room, access to which was limited. Animals were 
housed in cages for individual housing. In the control group, there were rats that were anesthetized, as in 
experimental rats, but the simulation of septoplasty itself was not performed. Naive animals in the control 
group were excluded, since pharmacological substances for general anesthesia can change the morpho-
functional state of neurons. All animals were housed in a separate room two weeks prior to surgery. In the 
experimental male rats were used no earlier than 2 weeks later – the period of adaptation to new conditions 
of detention. The rats received a standard diet once a day, with free access to water. All animals during 
the experiments were under the same conditions. In the postoperative period, all animals were constantly 
provided with food and clean water, as well as standard cage care. Additional methods of postoperative 
wound treatment were not used. The keeping of rats, modeling of surgical trauma – septoplasty, as well 
as the removal of animals from experience were carried out in accordance with the ethical standards set 
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Fig. 1. А. Scheme of the septoplasty simulation. 
Arrows indicate the direction of the nasal septum 
scarification. B. Location of the rat hippocampus 
subfields. Immunohistochemical reaction anti-p53. 
Staining with Mayer’s hematoxylin. Magnification, 
х10. С. Location of the rat hippocampus subfields. 
Nissl staining. Magnification,

 

 

  

in the Geneva Convention “International Guiding 
principles for Biomedical Research Involving 
Animals” (Geneva, 1990).

Experimental procedure
20 animals in the experimental group were 

simulated septoplasty using the standard method 
by zigzag scarification of the nasal cavity mucosa 
with a sharp probe in caudo-cranial direction (Fig. 
1a) [9].

Tissue probe
In the experimental and control groups, 

euthanasia was carried out by administering lethal 
doses of zoletil 100 solution. In the experimental 
group the animals were euthanised on the 2nd, 4th 
and 6th days postoperatively, 5 animals for each 
period. The brain was first perfused through the 
aorta with 0.9% sodium chloride solution, then 
with 10% formalin buffered solution, after which 
the brains were encased in paraffin blocks. Serial 
slices of the brain at the level of the bregma were 
taken with a microtome blade and 8 slices in the 
frontal plane, 4 µm thick, were obtained from each 
animal.

Staining
In each rat, 10 brain slices were stained 

with antibodies to p53 protein with Meyer’s 
haematoxylin and 10 slices were stained with Nissl 
toluidine blue. Hippocampal subfields CA1, CA2, 
CA3 and dentate gyrus (DG) were studied (Fig. 1b, 
1с).

Morphometry
In the pyramidal subfield layer, the absolute 

number of neurons that were nuclear antibody-
positive to p53 protein was counted, as well as the 
number of dark neurons (Fig. 2).

The counting area in each subfield was 
20934±1260 µm2. Neurons are counted using the 
Aperio ImageScope program. For the histological specimen analysis, the ImageJ software was used.

Statistical analysis of the data
The data obtained using cell counting methods were presented as mean ± SE. Then, they were 

compared between both groups using a t-test SPSS 21software.

Results

Number of dark neurons
There was a non-Gaussian distribution in the number of THs in the pyramidal layer of 

the hippocampus both in the experimental and control groups. In CA1, the number of DNs on 
days 2 and 4 did not differ significantly from the control, but on day 6 postoperatively there 
was a decrease (p<0.001) (Fig. 3b).
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Fig. 3. Changes in the number of p53-
positive neurons (p53) (a) and dark 
neurons (b) in the septoplasty simulation. 
Note: * - significant differences between 
data of the control group and terms 
after operation (p<0.001); ˅ - significant 
differences between data of the control 
group and terms after operation (p<0.05); 
† - significant differences between terms 
after operation within experimental group 
(p<0.001); ‡ - significant differences 
between terms after operation within the 
experimental group (p<0.05).

 

 

 

 

a 

b 

Fig. 2. P53-positive neurons (B, D, F, H, I, K, M, O) 
(yellow arrows, surrounded by mouse monoclonal 
antibodies to p53 protein, x400) and dark neurons 
(A, C, D, G, J, L, N, P) (blue arrows, Nissl toluidine 
blue, x400) in the hippocampal formation in rats 
on the 2nd (A, B, G), 4th (C, D, H) and 6th days (E, 
F) after the septoplasty simulation. Green arrows 
indicate intact neurons. Subfield CA1 – A, D, I, J; 
subfield CA2 – B, C, K, L; subfield CA3 – E, F, M, N; 
DG – G, H, O, P. Control group – I, J, K, L, M, N, O, P.
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There was no significant 
difference in CA2 between 
the experimental group and 
the control group. On day 2 
postoperatively, there was a 
minimum of THs compared 
to day 4 (p<0.001). On day 4 
postoperatively, there was the 
peak in number of THs in CA3 
compared to the rest of the day 
(p<0.001). In the control group, 
the number of THs was not 
different from day 2, but it was 
significantly lower compared 
to day 4 (p<0.001) and day 6 
(p<0.05) after surgery (Fig. 3b). 
In DG, similar results to CA3 
were observed (Fig. 3b) (Table 
1).

Number of p53-positive 
neurons. According to Mann-
Whitney test the number of 
p53-positive neurons in CA1 
significantly increased on days 2, 
4 (p<0.001) and 6 (p<0.05) after 
septoplasty compared to control 
group. Dynamically, the peak 
of increase in the p53 protein 
expression in the cytoplasm of CA1 and CA2 neurons of hippocampus occurred on days 2-4, 
and on day 6 the number of these neurons significantly decreased (p<0.001). On day 6, p53-
positive neurons in CA2 did not differ from the control group (Fig. 3a). In CA3 there was an 
increase in p53 protein expression at all time points after surgery compared to the controls 
(p<0.001).

In DG, compared to the controls, the number of p53-positive neurons was significantly 
higher at all time points of evaluation. The number of these cells peaked on day 4, compared 
to the other terms (p<0.001) (Fig. 3a) (Table 2).

Comparing the number of neurons in which the p53 protein was expressed into the 
cytoplasm and the DN number, a positive strong correlation was found at all evaluation lines 
and in all hippocampal subfields (Fig. 4).

The lowest coefficient of determination was found when evaluating the CA2 subfield on 
the 4th day after surgery (Table 3).

Discussion

The p53 protein is activated by cellular stress and DNA damage and, depending on the 
severity of stress and the specific cell type, can contribute to adaptive responses to stress or 
can trigger cell cycle arrest or its apoptosis [10]. When normal proliferating cells are DNA 
damaged, they may react in one of the two ways: cell cycle arrest r apoptosis, and p53 is 
engaged in both of those processes [11].

The p53 protein is an important component in the neuron apoptosis, for example, 
after ischemic event or excitotoxicity [12]. An increase in number of such neurons has been 
demonstrated in ischemia, traumatic brain injuries [13]. Some research studies have proved 
that p53 is part of the biochemical processes in the cell caused by the activation of NMDA 
receptors (N-methyl-D-aspartate) and finally resulting to apoptosis [14].

Table 1. DN number at different periods after septoplasty 
simulation in rats hippocampal formation by staining sections 
with Nissl toluidine blue stain

 
Hippocampal 

formation areas 
СА1 СА2 СА3 DG 

2nd day 8,17±1,5 11,27±2,17 16,31±3,3 18,8±4,15 

4th day 7,79±2,1 5,71±1,13 24,44±3,2 39,45±4,5 

6th day 5,75±0,7 4,75±1,25 14,25±3,6 9,75±3,17 

control 2,93±1,7 3,65±0,03 4,50±2,59 1,43±0,83 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Dynamics of p53-positive neurons at different periods 
after septoplasty simulation in rats

 
Hippocampal 

formation areas 
СА1 СА2 СА3 DG 

2nd day 4,72±1,26 4,72±1,26 4,72±1,26 4,72±1,26 

4th day 9,27±2,63 9,27±2,63 9,27±2,63 9,27±2,63 

6th day 2,86±0,55 2,86±0,55 2,86±0,55 2,86±0,55 

control 0,98±0,6 0,98±0,6 0,98±0,6 0,98±0,6 
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The mechanisms of proapoptotic action are assumed to be realized through the induction 
of the P53 gene (protein p53) expression, the regulation of which inhibits the passage of the 
cell cycle from G1 to S-phase, which blocks the division of cancer cells and tumor growth 
[15]. Except to the widely studied role of p53 as a regulator of apoptosis triggering, its 
neuroprotective role has also been demonstrated [16]. The main goal of neuroprotection is to 
prevent the death of neurons in the ischemic area, where apoptosis is one of the mechanisms 

Fig. 4. Correlation between the number of dark neurons (DN) and the number of p53-positive neurons 
(p53) in the hippocampal subfields CA1 (a-c), CA2 (d-f), CA3 (g-i) and DG (j-l) on the 2nd (a, d, g, j), 4th (b, 
e, h, k) and 6th (c, f, i, l) days after the septoplasty simulation.
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of neuronal death. Bioenergetic processes are 
slowed down in the penumbra and neurons 
which have not died yet, remaining in them. 
In this regard, the absence of neurons in the 
hippocampus with obvious morphological 
signs of apoptosis in the analysis of the slices 
obtained by us, may indicate the presence of 
neuroprotective properties of the p53 protein. 
It has been shown that posttranslational 
modifications of p53 can contribute to the 
differentiation of neurons, as well as to the 
growth and regeneration of axons [17].

It was shown that p53 is a neuroprotector 
in an in vivo model of taupathy [18]. By 
analyzing the chromatin immunoprecipitation 
chip, it was determined, that p53 controls the 
transcription of a group of genes participated 
in providing synaptic function. Genetic 
manipulation of these genes changed the 
neurotoxicity of the tau- protein. The authors 
have found, that both in mice’s neurons and in 
the human brain, transcriptional control of these synaptic genes is maintained due to p53. 
Thus, it has been suggested, that the provision of synaptic function, as a manifestation of 
neuroprotection, can be performed by p53 protein [18].

In addition to activating the P53 gene, NMDA receptors participate in caspase-dependent 
apoptosis, increasing the level of calcium ions, boosting the enzyme caspase-3 activity. 
This enzyme, in turn, start the formation of dark neurons and their next degeneration. 
When inhibiting caspases with the pancaspase inhibitor FK011, a decrease in the changes 
characteristic of dark neurons has been achieved [19].

Previously, it was also shown, that dark neurons can both restore their morpho-
functional state by increasing the cisterns of the granular endoplasmic reticulum with the 
formation of membrane curls, the transition of this process to astrocytic processes and, as 
a consequence, with a subsequent decline in the degree of structural compaction of the cell 
[7], and be a sign of the final necrotic decay of the cell regardless of the cause of neuron 
death, including various biochemical cascades of apoptosis [8]. There is an opinion, that dark 
neurons- are the result of oxidative stress. Thus, it has been shown, that the use of luteolin 
after brain injury in vivo reduces the number of dark neurons and oxidative stress in them 
in the hippocampus [20]. It has been shown, that the presence of regenerating dark neurons 
in the case of animal studies indicates the vulnerability of neuroprotective properties of 
neuroglia [21]. The presence of such phenomena, as cytoplasmic shrinkage and surface 
reduction in DN is compared by some authors with the manifestation of neuroplasticity 
characteristics [22, 23]. In fact, plasticity refers to the unique ability of the brain (neuron) to 
change and reorganize in response to changes in the environment. This property of neurons 
contributes to their viability and, consequently, the organism’s survival [24]. The most well-
known examples of neuronal plasticity are the formation of new synapses, the proliferation 
of dendritic spines, the retraction and simplification of dendrites, and the reduction of 
dendritic spines under stressful conditions. Some studies have shown that endogenous or 
exogenous stressors are associated with a decrease in the surface and dendritic spike of 
neurons [25].

The high determination coefficients found in this study confirm the theory that presence 
of dark neurons in the hippocampus and dentate gyrus is most likely closely related to the 
expression of the p53 protein during surgical stress caused by septoplasty simulation in rats. 
This is probably due to the activation of NMDA receptors in neurons under the influence of 
surgical stress, as it has been shown that stress leads to an increase in the content of NMDA 

Table 3. Determination coefficients for 
comparing the number of dark neurons (DN) and 
the number of p53-positive neurons (p53) in the 
hippocampus after septoplasty simulation

Days after Septoplasty Simulation 

 2-d (R2) 4-th (R2) 6-th (R2)  

СА1 0,80 0,94 0,71 

СА2 0,92 0,60 0,73 

СА3 0,88 0,70 0,61 

DG 0,92 0,71 0,82 

 

 
 



Cell Physiol Biochem 2023;57:23-33
DOI: 10.33594/000000605
Published online: 8 February, 2023 30

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2023 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Kastyro et al.: Hippocampus neuronal changes and the expression of P35 protein after 
nasal cavity surgical stimulation

receptors in the dendritic spike apparatus [26]. In addition, exposure to a large amount of 
glutamate leads to functional changes in neurons and subsequent launch of the apoptosis 
program [27]. Stress is known to result in degeneration of hippocampal neuron dendrites 
[28]. In dark neurons, the dendrites are poorly developed or practically absent as a result of 
modulation of NMDA receptors. This was shown by the example of CA3 subfield neurons in 
the hippocampus [29]. In addition, chronic stress has been reported to cause atrophy of the 
pyramidal layer of the subfield CA1 [30, 31], decrease the long-term potentiation of neurons 
of the hippocampal CA1 subfield [32] and cause apoptosis of neurons, as well as a decrease 
in the density of dendritic spikes in neurons in the CA1 region of the hippocampus [33]. 
Thus, it can be assumed that there is a common mechanism that result to the start of two 
processes, discussed in this article – the expression of the p53 protein in the cytoplasm and 
the formation of dark neurons. The trigger of these pathways is probably the activation of 
NMDA receptors of neurons.

Morphological changes in the hippocamp are confirmed by our previous studies, 
which showed that septoplasty simulation in rats provokes the development of many stress 
reactions [34]  and even a breakdown in adaptation [35]: an increase in the number of dark 
neurons [36], the expression of the p53 protein [3], a significant release of corticosterone into 
the blood plasma [37], and an increase in degranulation of mast cells [38], disturbances in 
the balance of the autonomic nervous system [37, 39, 40], changes in behavior when testing 
rats in an open field [9], the appearance of anxiety and a depressive-like state [37, 41-43].

Conclusion

Septoplasty simulation in rat’s results in the pathogenetic cascades onset, which, in its 
turn, changes the morpho-functional properties of neurons of the pyramidal layer of the 
hippocampus and contributes to their neuroplasticity. Activation of NMDA receptors of 
neurons during stress apparently, initiates two ways of neuron life - the beginning of p53 
protein expression and the formation of dark neurons. Both ways can finally lead to apoptosis.

In further studies, it is necessary to study at what postoperative period the p53 protein 
expression in neurons decreases and the number of dark neurons in the hippocampal 
formation returns to normal values. Most likely, this should occur after the 14th day after 
surgery, since it is known that migrating neurons from the dentate gyrus to the hippocampus 
begin to synthesize neurotransmitters and fully perform their function starting from the 
14th day of their appearance in the pyramidal layer of the hippocampus [19, 20, 32].

The formation of dark neurons and the expression of the p53 protein in them are most 
likely to be interconnected and can probably provide neuroprotective mechanisms.

Compliance with Ethical Standards

The keeping of rats, modeling of surgical trauma – septoplasty, as well as the removal 
of animals from experience were carried out in accordance with the ethical standards set in 
the Geneva Convention “International Guiding principles for Biomedical Research Involving 
Animals” (Geneva, 1990).
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